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The classic EP-theorem

Theorem (Erdős and Pósa, 1965)

There is a function f (k) = O(k log(k)) s.t. for every graph G and k ∈ N
1 G contains k vertex-disjoint cycles, or

2 there exists X ⊆ V (G ), |X | ≤ f (k) s.t. G − X has no cycles.

Same holds for edges;

Theorem (Erdős and Pósa, 1965)
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1 G contains k edge-disjoint cycles, or
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Vertex-Erdős-Pósa property

A class of graphs H has the vertex-EP property with bounding function
f : N→ R if for every graph G and every k ∈ N,

1 G contains k vertex-disjoint subgraphs, each isomorphic to a graph in
H, or

2 there exists a vertex set X with |X | ≤ f (k) s.t. G − X has no
subgraph in H.
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Edge-Erdős-Pósa property

A class of graphs H has the edge-EP property with bounding function
f : N→ R if for every graph G and every k ∈ N,

1 G contains k edge-disjoint subgraphs, each isomorphic to a graph in
H, or

2 there exists an edge set X with |X | ≤ f (k) s.t. G − X has no
subgraph in H.
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Given a graph J, a J-expansion is a graph that has J as a minor.

Let M(J) denote the class of J-expansions.

e.g. {cycles} ⊂ M(C3).

Theorem (1986, Robertson and Seymour)

M(J) has the vertex-EP property if and only if J is planar.

Theorem (2019, CvB, Huynh, Joret and Raymond)

For every planar graph J, the class M(J) has the vertex-EP property with
bounding function fJ(k) = O (k · log(k + 1)).

Optimal bounding function.

Analogue for the edge-EP property?
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No (clear) analogue for edge-EP property

Theorem, Bruhn, Heinlein and Joos (2018+)

There exist planar graphs J such that M(J) does not have the edge-EP
property, e.g. if J is:

a ladder of length at least 71, or

a binary tree of height at least 37.

M(J) does have the edge-EP property if J = . . .

C3 (classic EP-theorem, 1965)

Cl , for any l ≥ 3 (‘long cycles’, Bruhn, Heinlein and Joos, 2019 )

θl , for any l ≥ 1 (Chatzidimitriou, Raymond, Sau, Thilikos, 2018)

K4 (Bruhn and Heinlein, 2019+)

?
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Conjectures for edge-EP

Conjecture (Bruhn, Heinlein and Joos 2019+)

M(J) does not have the edge-EP property if J is a planar graph with
sufficiently large treewidth.
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Conjectures for edge-EP

Conjecture (Bruhn, Heinlein and Joos 2019+): if J is a planar graph such
that some sufficiently large ‘condensed wall’ contains a J-expansion, then
M(J) has the edge-EP property.
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Long cycles

Theorem (Bruhn and Heinlein, 2019)

For every fixed integer l ≥ 3 and every k ∈ N, every graph G contains

k edge-disjoint cycles of length at least l (‘long cycles’) or

an edge set of size O(k2 · log k + lk) such that G − X has no long
cycles.

Shorter proof (6 instead of 25 pages):

Theorem (Bruhn, C., Joret, Ulmer, 2019+)

The same, but instead with O(lk · log(lk)).

Compare with:

Theorem (Moesset, Noever, Skorić and Weissenberger, 2016+)

The vertex-EP property for long cycles holds with (optimal) bounding
function O(k · log k + lk).
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New proof of the classic Erdős-Pósa theorem

g(k) := 8 log2(k + 1) + 2

Classic edge-EP

For every graph G and every k ∈ N
1 G contains k edge-disjoint cycles, or

2 there exists a edge set X of size at most k · g(k) s.t. G − X has no
cycles.

Remark: the proof for vertex-EP is the same
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Plan of the proof

g(k) := 8 log2(k + 1) + 2

1 By induction on |E (G )|, may assume that

girth is larger than g(k), and
minimum degree is at least 3.

2 ⇒ G has a minor G ′ with minimum degree ≥ 3k .

3 ⇒ G ′ contains k vertex-disjoint cycles.

4 ⇒ G contains k edge-disjoint cycles.
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Proof that we may assume girth > g(k)

Suppose that G has girth ≤ g(k).

Let C be a shortest cycle and apply induction to G ∗ = G − E (C ).

1 Either G ∗ has k − 1 edge-disjoint cycles, or

2 G ∗ − X ∗ has no cycles, for some edge set X ∗ of size at most
(k − 1) · g(k − 1).
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Proof that we may assume girth > g(k)

Suppose that G has girth ≤ g(k).

Let C be a shortest cycle and apply induction to G ∗ = G − E (C ).

1 If G ∗ has k − 1 edge-disjoint cycles, then G has k edge-disjoint cycles.

2 If G ∗ − X ∗ has no cycles, for some edge set X ∗ of size at most
(k − 1) · g(k − 1), then set X := X ∗ ∪ E (C ).
Then G − X has no cycles and

|X | = |X ∗|+ |E (C )|
≤ (k − 1) · g(k − 1) + g(k)

≤ k · g(k).

:-)
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Proof that we may assume minimum degree ≥ 3

Vertices of degree 0 or 1 are not visited by any cycle, so may assume
minimum degree ≥ 2.

If deg(v) = 2 for some vertex v , then consider a neighbour u of v .
Contract edge uv . Apply induction to the resulting graph G ∗.

v

wu u w

G has k edge-disjoint cycles ⇐ G∗ has k edge-disjoint cycles.

v

wu u w

G − X has no cycles ⇐ G∗ − X ∗ has no cycles.
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Wouter Cames van Batenburg (ULB) Edge-Erdős-Pósa, packing and contraction 15 / 39



Proof that we may assume minimum degree ≥ 3

If deg(v) = 2 for some vertex v , then consider a neighbour u of v .
Contract edge uv . Apply induction to the resulting graph G ∗.

v

wu u w

G has k edge-disjoint cycles ⇐ G∗ has k edge-disjoint cycles.

v

wu u w

G − X has no cycles ⇐ G∗ − X ∗ has no cycles.

Wouter Cames van Batenburg (ULB) Edge-Erdős-Pósa, packing and contraction 15 / 39



Plan of the proof
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Plan of the proof

g(k) := 8 log2(k + 1) + 2

1 By induction on |E (G )|, may assume that

girth is larger than g(k), and
minimum degree is at least 3.

2 ⇒ G has a minor G ′ with minimum degree ≥ 3 · 2g(k)/8 ≥ 3k .

3 ⇒ G ′ contains k vertex-disjoint cycles.

4 ⇒ G contains k edge-disjoint cycles.
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Find minor with minimum degree ≥ 3 · 2g(k)/8 ≥ 3k

Recall: girth ≥ g(k) and minimum degree ≥ 3.

Could directly apply

Lemma, Kühn and Osthus (2003)

Let l ≥ 1 and g ≥ 3 be integers. Then every graph of girth at least 8l + 3
and minimum degree r contains a minor of minimum degree at least
r(r − 1)l .

but let’s prove it.
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Find minor with minimum degree ≥ 3 · 2g(k)/8 ≥ 3k

Recall: girth ≥ g(k) and minimum degree ≥ 3.

Consider a maximal packing of G with balls of radius r := g(k)/8.

No ball contains a cycle.

x

short cycle
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Find minor with minimum degree ≥ 3 · 2g(k)/8 ≥ 3k

Recall: girth ≥ g(k) and minimum degree ≥ 3.
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No ball contains a cycle.

⇒ each ball induces a tree with at least 3 · 2r−1 leaves.

x
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Find minor with minimum degree ≥ 3 · 2g(k)/8 ≥ 3k

Recall: girth ≥ g(k) and minimum degree ≥ 3.

Consider a maximal packing of G with balls of radius r := g(k)/8.

Every two balls are joined by at most one edge

x1 x2

short            cycle
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Find minor with minimum degree ≥ 3 · 2g(k)/8 ≥ 3k

Recall: girth ≥ g(k) and minimum degree ≥ 3.

Consider a maximal packing of G with balls of radius r := g(k)/8.

Assume for simplicity that the balls cover V (G ). Then

Every leaf of a ball has neighbours in some other ball

Each ball induces a tree with at least 3 · 2r−1 leaves.

Every two balls are joined by at most one edge.

Contract each ball → minor G ′ with minimum degree at least 3 · 2r .
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Find minor with minimum degree ≥ 3 · 2g(k)/8 ≥ 3k

Recall: girth ≥ g(k) and minimum degree ≥ 3.

Consider a maximal packing of G with balls of radius r := g(k)/8.

Assume for simplicity that the balls cover V (G ). Then

Every leaf of a ball has neighbours in some other ball

Each ball induces a tree with at least 3 · 2r−1 leaves.

Every two balls are joined by at most one edge.

Contract each ball → minor G ′ with minimum degree at least 3 · 2r .

Wouter Cames van Batenburg (ULB) Edge-Erdős-Pósa, packing and contraction 23 / 39



If the balls do not cover V (G )

Neighbours of leaves are not necessarily in another ball.
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Find minor with minimum degree ≥ 3 · 2g(k)/8 ≥ 3k

Instead:
Let X be a maximal set of vertices that are pairwise at distance at least
g(k)/4.

Consider balls (B(x))x∈X of radius r := g(k)/8.

Add each vertex at distance r + 1 from X to one of the balls it is
adjacent to.

Then add each vertex at distance r + 2 from X to one of the sets
constructed in the previous step.

etc. until every vertex is covered.

Yields a partition of V (G ) with approximate ‘balls’ (H(x))x∈X such that
each v ∈ H(x) is at distance at most 2r from x .

Each ‘ball’ still induces a tree with at least 3 · 2r−1 leaves.

Every leaf has neighbours in some other ‘ball’
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Plan of the proof

g(k) := 8 log2(k + 1) + 2

1 By induction on |E (G )|, may assume that

girth is larger than g(k), and
minimum degree is at least 3.

2 ⇒ G has a minor G ′ with minimum degree ≥ 3k .

3 ⇒ G ′ contains k vertex-disjoint cycles.

4 ⇒ G contains k edge-disjoint cycles.
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Lemma

Let k ∈ N. If G has minimum degree at least 3k then G contains k
vertex-disjoint cycles.

Proof:

Induction on k . May assume k ≥ 1. Let C be a shortest cycle.

Every vertex x outside C has at most three neighbours in V (C ).
(otherwise shorter cycle)

Thus minimum degree of G − V (C ) is at least 3(k − 1).

Induction: G − V (C ) has k − 1 vertex-disjoint cycles {C1, . . . ,Ck−1}.
So G has k vertex-disjoint cycles {C ,C1, . . . ,Ck−1}.
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G-V(C)

C x

G-V(C)

C x or
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Plan of the proof

g(k) := 8 log2(k + 1) + 2

1 By induction on |E (G )|, may assume that

girth is larger than g(k), and
minimum degree is at least 3.

2 ⇒ G has a minor G ′ with minimum degree ≥ 3k .

3 ⇒ G ′ contains k vertex-disjoint cycles.

4 ⇒ G contains k edge-disjoint cycles.
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Plan of the proof; how to adapt to long cycles?

g(k) := C · log2(k + 1)

By induction on |E (G )|, may assume that

each cycle has length larger than g(k), and
minimum degree is at least 3.

Partition V (G ) into approximate balls of radius r := g(k)/8.

Each ball induces a tree with 2Ω(r) leaves. (otherwise short cycle)

Every two balls are joined by at most one edge. (otherwise short cycle)

Contract each ball → minor G ′ with minimum degree ≥ 2Ωr = Ω(k).

⇒ G ′ contains k vertex-disjoint cycles.

⇒ G contains k edge-disjoint cycles.
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Plan of the proof; how to adapt to long cycles

g(k) := C · l · log2((k + 1)(l + 1))

By induction on |E (G )|, may assume that

each long cycle has length larger than g(k), and
‘locally’, each block is incident to at least three other blocks.

Partition V (G ) into approximate balls of radius r := g(k)/8.

Each ball induces a tree-like graph with 2Ω(r) leaf-blocks. (otherwise short

long cycle)

Edges between two distinct balls are locally concentrated (essentially
only between two leaf-blocks). (otherwise short long cycle)

Contract each ball → minor G ′ with minimum degree ≥ 2Ωr = Ω(k).

⇒ G ′ contains k vertex-disjoint long cycles.

⇒ G contains k edge-disjoint long cycles.

Wouter Cames van Batenburg (ULB) Edge-Erdős-Pósa, packing and contraction 32 / 39



More general scheme?

Suppose we want to prove the edge-EP property for a graph class H, with
some bounding function k · g(k) = O(k log k).

By induction on |E (G )|, may assume that

each copy of H ∈ H in G has more than g(k) edges.

Partition V (G ) into approximate balls of radius O(g(k)).

Show that each ball exhibits some form of exponential growth. Ie, has
2Ω(g(k)) vertices that have a neighbour in some other ball.

Show that not too many such vertices have their neighbours in the
same other ball.

Contract balls → minor G ′ with min. degree ≥ 2Ω(g(k)) = Ω(k1+ε).

⇒ G ′ (and hence G ) contains a large clique minor.

⇒ G contains k edge-disjoint subgraphs, each isomorphic to a graph
in H .
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Open problems

What other Erdős-Pósa problems are amenable to this
packing-contraction approach?

Does the edge-EP property hold for {cycles of length 0 mod m}?
True for m = 2, unknown for m ≥ 3.

Characterize the planar graphs J for which M(J) has the edge-EP
property.
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Open problems
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Thank you for your attention!
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Sketch of the proof

By induction on |V (G )|, may assume that girth≥ g(k).

Cover V (G ) with vertex-disjoint balls of radius r := g(k)/8.

derive that G has minimum degree 3

show that each ball has eΩ(r) leaves.

every two balls are joined by at most one edge (otherwise short cycle)

contract each ball → minor G ′ with minimum degree eΩ(r) ≥ 3k .

→ G ′ contains k vertex-disjoint cycles.

→ G contains k vertex-disjoint cycles
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