Edge-Erdős-Pósa through packing and contraction

Wouter Cames van Batenburg

Joint work with Gwenaël Joret and Arthur Ulmer

Université Libre de Bruxelles

November 2019, Nijmegen

Theorem (Erdős and Pósa, 1965)

There is a function $f(k) = O(k \log(k))$ s.t. for every graph G and $k \in \mathbb{N}$

- G contains k vertex-disjoint cycles, or
- 3 there exists $X \subseteq V(G)$, $|X| \leq f(k)$ s.t. G X has no cycles.

Theorem (Erdős and Pósa, 1965)

There is a function $f(k) = O(k \log(k))$ s.t. for every graph G and $k \in \mathbb{N}$

- G contains k vertex-disjoint cycles, or
- **2** there exists $X \subseteq V(G)$, $|X| \leq f(k)$ s.t. G X has no cycles.

Same holds for edges;

Theorem (Erdős and Pósa, 1965)

There is a function $f(k) = O(k \log(k))$ s.t. for every graph G and $k \in \mathbb{N}$

- G contains k vertex-disjoint cycles, or
- 3 there exists $X \subseteq V(G)$, $|X| \leq f(k)$ s.t. G X has no cycles.

Same holds for edges;

Theorem (Erdős and Pósa, 1965)

There is a function $f(k) = O(k \log(k))$ s.t. for every graph G and $k \in \mathbb{N}$

- G contains k edge-disjoint cycles, or
- **2** there exists $X \subseteq E(G)$, $|X| \leq f(k)$ s.t. G X has no cycles.

A class of graphs \mathcal{H} has the vertex-EP property with bounding function $f : \mathbb{N} \to \mathbb{R}$ if for every graph G and every $k \in \mathbb{N}$,

- G contains k vertex-disjoint subgraphs, each isomorphic to a graph in *H*, or
- e there exists a vertex set X with |X| ≤ f(k) s.t. G − X has no subgraph in H.

A class of graphs \mathcal{H} has the *edge-EP property* with *bounding function* $f : \mathbb{N} \to \mathbb{R}$ if for every graph G and every $k \in \mathbb{N}$,

- G contains k edge-disjoint subgraphs, each isomorphic to a graph in *H*, or
- e there exists an edge set X with |X| ≤ f(k) s.t. G − X has no subgraph in H.

Let $\mathcal{M}(J)$ denote the class of *J*-expansions.

e.g. $\{cycles\} \subset \mathcal{M}(C_3)$.

Let $\mathcal{M}(J)$ denote the class of *J*-expansions.

e.g. $\{cycles\} \subset \mathcal{M}(C_3)$.

Theorem (1986, Robertson and Seymour)

 $\mathcal{M}(J)$ has the vertex-EP property if and only if J is planar.

Let $\mathcal{M}(J)$ denote the class of *J*-expansions.

e.g. $\{cycles\} \subset \mathcal{M}(C_3)$.

Theorem (1986, Robertson and Seymour)

 $\mathcal{M}(J)$ has the vertex-EP property if and only if J is planar.

Theorem (2019, CvB, Huynh, Joret and Raymond)

For every planar graph *J*, the class $\mathcal{M}(J)$ has the vertex-EP property with bounding function $f_J(k) = O(k \cdot \log(k+1))$.

Let $\mathcal{M}(J)$ denote the class of *J*-expansions.

e.g. $\{cycles\} \subset \mathcal{M}(C_3)$.

Theorem (1986, Robertson and Seymour)

 $\mathcal{M}(J)$ has the vertex-EP property if and only if J is planar.

Theorem (2019, CvB, Huynh, Joret and Raymond)

For every planar graph *J*, the class $\mathcal{M}(J)$ has the vertex-EP property with bounding function $f_J(k) = O(k \cdot \log(k+1))$.

Optimal bounding function.

Let $\mathcal{M}(J)$ denote the class of *J*-expansions.

e.g. $\{cycles\} \subset \mathcal{M}(C_3)$.

Theorem (1986, Robertson and Seymour)

 $\mathcal{M}(J)$ has the vertex-EP property if and only if J is planar.

Theorem (2019, CvB, Huynh, Joret and Raymond)

For every planar graph *J*, the class $\mathcal{M}(J)$ has the vertex-EP property with bounding function $f_J(k) = O(k \cdot \log(k+1))$.

Optimal bounding function.

Analogue for the edge-EP property?

No (clear) analogue for edge-EP property

Theorem, Bruhn, Heinlein and Joos (2018+)

There exist planar graphs J such that $\mathcal{M}(J)$ does not have the edge-EP property, e.g. if J is:

- a ladder of length at least 71, or
- a binary tree of height at least 37.

No (clear) analogue for edge-EP property

Theorem, Bruhn, Heinlein and Joos (2018+)

There exist planar graphs J such that $\mathcal{M}(J)$ does not have the edge-EP property, e.g. if J is:

a ladder of length at least 71, or

• a binary tree of height at least 37.

$\mathcal{M}(J)$ does have the edge-EP property if $J = \dots$

- C₃ (classic EP-theorem, 1965)
- C_l , for any $l \ge 3$ ('long cycles', Bruhn, Heinlein and Joos, 2019)
- θ_l , for any $l \ge 1$ (Chatzidimitriou, Raymond, Sau, Thilikos, 2018)
- K₄ (Bruhn and Heinlein, 2019+)

• ?

Conjecture (Bruhn, Heinlein and Joos 2019+)

 $\mathcal{M}(J)$ does not have the edge-EP property if J is a planar graph with sufficiently large treewidth.

Conjectures for edge-EP

Conjecture (Bruhn, Heinlein and Joos 2019+): if J is a planar graph such that some sufficiently large 'condensed wall' contains a J-expansion, then $\mathcal{M}(J)$ has the edge-EP property.

Long cycles

Theorem (Bruhn and Heinlein, 2019)

For every fixed integer $l \geq 3$ and every $k \in \mathbb{N}$, every graph G contains

- k edge-disjoint cycles of length at least l ('long cycles') or
- an edge set of size $O(k^2 \cdot \log k + lk)$ such that G X has no long cycles.

Long cycles

Theorem (Bruhn and Heinlein, 2019)

For every fixed integer $l \geq 3$ and every $k \in \mathbb{N}$, every graph G contains

- k edge-disjoint cycles of length at least l ('long cycles') or
- an edge set of size $O(k^2 \cdot \log k + lk)$ such that G X has no long cycles.

Shorter proof (6 instead of 25 pages):

Theorem (Bruhn, C., Joret, Ulmer, 2019+)

The same, but instead with $O(lk \cdot \log(lk))$.

Long cycles

Theorem (Bruhn and Heinlein, 2019)

For every fixed integer $l \geq 3$ and every $k \in \mathbb{N}$, every graph G contains

- k edge-disjoint cycles of length at least l ('long cycles') or
- an edge set of size $O(k^2 \cdot \log k + lk)$ such that G X has no long cycles.

Shorter proof (6 instead of 25 pages):

Theorem (Bruhn, C., Joret, Ulmer, 2019+)

The same, but instead with $O(lk \cdot \log(lk))$.

Compare with:

Theorem (Moesset, Noever, Skorić and Weissenberger, 2016+)

The vertex-EP property for long cycles holds with (optimal) bounding function $O(k \cdot \log k + lk)$.

$$g(k) := 8\log_2(k+1) + 2$$

Classic edge-EP

For every graph G and every $k \in \mathbb{N}$

G contains k edge-disjoint cycles, or

② there exists a edge set X of size at most k ⋅ g(k) s.t. G − X has no cycles.

Remark: the proof for vertex-EP is the same

$g(k) := 8\log_2(k+1) + 2$

1 By induction on |E(G)|, may assume that

- girth is larger than g(k), and
- minimum degree is at least 3.
- \bigcirc \Rightarrow G has a minor G' with minimum degree $\ge 3k$.
- \Rightarrow G contains k edge-disjoint cycles.

$g(k) := 8 \log_2(k+1) + 2$

• By induction on |E(G)|, may assume that

- girth is larger than g(k), and
- minimum degree is at least 3.
- \bigcirc \Rightarrow G has a minor G' with minimum degree $\ge 3k$.
- \Rightarrow G contains k edge-disjoint cycles.

Suppose that G has girth $\leq g(k)$.

Let C be a shortest cycle and apply induction to $G^* = G - E(C)$.

- Either G^* has k 1 edge-disjoint cycles, or
- G^{*} − X^{*} has no cycles, for some edge set X^{*} of size at most (k − 1) · g(k − 1).

Proof that we may assume girth > g(k)

Suppose that G has girth $\leq g(k)$.

Let C be a shortest cycle and apply induction to $G^* = G - E(C)$.

• If G^* has k-1 edge-disjoint cycles, then G has k edge-disjoint cycles.

Proof that we may assume girth > g(k)

Suppose that G has girth $\leq g(k)$.

Let C be a shortest cycle and apply induction to $G^* = G - E(C)$.

• If G^* has k-1 edge-disjoint cycles, then G has k edge-disjoint cycles.

 If G* - X* has no cycles, for some edge set X* of size at most (k - 1) ⋅ g(k - 1), then set X := X* ∪ E(C). Then G - X has no cycles and

$$egin{array}{rcl} X| &=& |X^*|+|E(C)| \ &\leq& (k-1)\cdot g(k-1)+g(k) \ &\leq& k\cdot g(k). \end{array}$$

:-)

Vertices of degree 0 or 1 are not visited by any cycle, so may assume minimum degree ≥ 2 .

If deg(v) = 2 for some vertex v, then consider a neighbour u of v.
Contract edge uv. Apply induction to the resulting graph G*.

If deg(v) = 2 for some vertex v, then consider a neighbour u of v.
Contract edge uv. Apply induction to the resulting graph G*.

G has k edge-disjoint cycles \leftarrow G^{*} has k edge-disjoint cycles.

If deg(v) = 2 for some vertex v, then consider a neighbour u of v.
Contract edge uv. Apply induction to the resulting graph G*.

G has k edge-disjoint cycles \leftarrow G^{*} has k edge-disjoint cycles.

G - X has no cycles $\Leftarrow G^* - X^*$ has no cycles.

$g(k) := 8 \log_2(k+1) + 2$

• By induction on |E(G)|, may assume that

- girth is larger than g(k), and
- minimum degree is at least 3.
- \bigcirc \Rightarrow G has a minor G' with minimum degree $\ge 3k$.
- \Rightarrow G contains k edge-disjoint cycles.

$g(k) := 8\log_2(k+1) + 2$

1 By induction on |E(G)|, may assume that

- girth is larger than g(k), and
- minimum degree is at least 3.
- $\bigcirc \Rightarrow G$ has a minor G' with minimum degree $\geq 3 \cdot 2^{g(k)/8} \geq 3k$.
- \Rightarrow G contains k edge-disjoint cycles.

Recall: girth $\geq g(k)$ and minimum degree ≥ 3 .

Could directly apply

Lemma, Kühn and Osthus (2003)

Let $l \ge 1$ and $g \ge 3$ be integers. Then every graph of girth at least 8l + 3 and minimum degree r contains a minor of minimum degree at least $r(r-1)^l$.

but let's prove it.

Recall: girth $\geq g(k)$ and minimum degree ≥ 3 .

Consider a maximal packing of G with balls of radius r := g(k)/8.

• No ball contains a cycle.

Recall: girth $\geq g(k)$ and minimum degree ≥ 3 .

Consider a maximal packing of G with balls of radius r := g(k)/8.

- No ball contains a cycle.
- \Rightarrow each ball induces a tree with at least $3 \cdot 2^{r-1}$ leaves.

Recall: girth $\geq g(k)$ and minimum degree ≥ 3 .

Consider a maximal packing of G with balls of radius r := g(k)/8.

- No ball contains a cycle.
- \Rightarrow each ball induces a tree with at least $3 \cdot 2^{r-1}$ leaves.

Recall: girth $\geq g(k)$ and minimum degree ≥ 3 .

Consider a maximal packing of G with balls of radius r := g(k)/8.

• Every two balls are joined by at most one edge

Consider a maximal packing of G with balls of radius r := g(k)/8.

Assume for simplicity that the balls cover V(G). Then

• Every leaf of a ball has neighbours in some other ball

Consider a maximal packing of G with balls of radius r := g(k)/8.

Assume for simplicity that the balls cover V(G). Then

- Every leaf of a ball has neighbours in some other ball
- Each ball induces a tree with at least $3 \cdot 2^{r-1}$ leaves.

Consider a maximal packing of G with balls of radius r := g(k)/8.

Assume for simplicity that the balls cover V(G). Then

- Every leaf of a ball has neighbours in some other ball
- Each ball induces a tree with at least $3 \cdot 2^{r-1}$ leaves.
- Every two balls are joined by at most one edge.

Consider a maximal packing of G with balls of radius r := g(k)/8.

Assume for simplicity that the balls cover V(G). Then

- Every leaf of a ball has neighbours in some other ball
- Each ball induces a tree with at least $3 \cdot 2^{r-1}$ leaves.
- Every two balls are joined by at most one edge.
- Contract each ball \rightarrow minor G' with minimum degree at least $3 \cdot 2^r$.

If the balls do not cover V(G)

Neighbours of leaves are not necessarily in another ball.

Instead:

Let X be a maximal set of vertices that are pairwise at distance at least g(k)/4.

- Consider balls $(B(x))_{x \in X}$ of radius r := g(k)/8.
- Add each vertex at distance r + 1 from X to one of the balls it is adjacent to.
- Then add each vertex at distance r + 2 from X to one of the sets constructed in the previous step.
- etc. until every vertex is covered.

Instead:

Let X be a maximal set of vertices that are pairwise at distance at least g(k)/4.

- Consider balls $(B(x))_{x \in X}$ of radius r := g(k)/8.
- Add each vertex at distance r + 1 from X to one of the balls it is adjacent to.
- Then add each vertex at distance r + 2 from X to one of the sets constructed in the previous step.
- etc. until every vertex is covered.

Yields a partition of V(G) with approximate 'balls' $(H(x))_{x \in X}$ such that each $v \in H(x)$ is at distance at most 2r from x.

Instead:

Let X be a maximal set of vertices that are pairwise at distance at least g(k)/4.

- Consider balls $(B(x))_{x \in X}$ of radius r := g(k)/8.
- Add each vertex at distance r + 1 from X to one of the balls it is adjacent to.
- Then add each vertex at distance r + 2 from X to one of the sets constructed in the previous step.
- etc. until every vertex is covered.

Yields a partition of V(G) with approximate 'balls' $(H(x))_{x \in X}$ such that each $v \in H(x)$ is at distance at most 2r from x.

- Each 'ball' still induces a tree with at least $3 \cdot 2^{r-1}$ leaves.
- Every leaf has neighbours in some other 'ball'

$g(k) := 8\log_2(k+1) + 2$

1 By induction on |E(G)|, may assume that

- girth is larger than g(k), and
- minimum degree is at least 3.
- \bigcirc \Rightarrow G has a minor G' with minimum degree $\ge 3k$.
- $\bigcirc \Rightarrow G'$ contains k vertex-disjoint cycles.
- \Rightarrow G contains k edge-disjoint cycles.

Let $k \in \mathbb{N}$. If G has minimum degree at least 3k then G contains k vertex-disjoint cycles.

Let $k \in \mathbb{N}$. If G has minimum degree at least 3k then G contains k vertex-disjoint cycles.

- Induction on k. May assume $k \ge 1$. Let C be a shortest cycle.
- Every vertex x outside C has at most three neighbours in V(C). (otherwise shorter cycle)

Let $k \in \mathbb{N}$. If G has minimum degree at least 3k then G contains k vertex-disjoint cycles.

- Induction on k. May assume $k \ge 1$. Let C be a shortest cycle.
- Every vertex x outside C has at most three neighbours in V(C). (otherwise shorter cycle)
- Thus minimum degree of G V(C) is at least 3(k-1).

Let $k \in \mathbb{N}$. If G has minimum degree at least 3k then G contains k vertex-disjoint cycles.

- Induction on k. May assume $k \ge 1$. Let C be a shortest cycle.
- Every vertex x outside C has at most three neighbours in V(C). (otherwise shorter cycle)
- Thus minimum degree of G V(C) is at least 3(k-1).
- Induction: G V(C) has k 1 vertex-disjoint cycles $\{C_1, \ldots, C_{k-1}\}$.

Let $k \in \mathbb{N}$. If G has minimum degree at least 3k then G contains k vertex-disjoint cycles.

- Induction on k. May assume $k \ge 1$. Let C be a shortest cycle.
- Every vertex x outside C has at most three neighbours in V(C). (otherwise shorter cycle)
- Thus minimum degree of G V(C) is at least 3(k-1).
- Induction: G V(C) has k 1 vertex-disjoint cycles $\{C_1, \ldots, C_{k-1}\}$.
- So G has k vertex-disjoint cycles $\{C, C_1, \ldots, C_{k-1}\}$.

$g(k) := 8\log_2(k+1) + 2$

1 By induction on |E(G)|, may assume that

- girth is larger than g(k), and
- minimum degree is at least 3.
- \bigcirc \Rightarrow G has a minor G' with minimum degree $\ge 3k$.
- $\bigcirc \Rightarrow G'$ contains k vertex-disjoint cycles.
- \Rightarrow G contains k edge-disjoint cycles.

$g(k) := 8\log_2(k+1) + 2$

1 By induction on |E(G)|, may assume that

- girth is larger than g(k), and
- minimum degree is at least 3.
- \bigcirc \Rightarrow G has a minor G' with minimum degree $\ge 3k$.
- $④ \Rightarrow G$ contains k edge-disjoint cycles.

Plan of the proof; how to adapt to long cycles?

 $g(k) := C \cdot \log_2(k+1)$

- By induction on |E(G)|, may assume that
 - each cycle has length larger than g(k), and
 - minimum degree is at least 3.
- Partition V(G) into approximate balls of radius r := g(k)/8.
- Each ball induces a tree with $2^{\Omega(r)}$ leaves. (otherwise short cycle)
- Every two balls are joined by at most one edge. (otherwise short cycle)
- Contract each ball \rightarrow minor G' with minimum degree $\geq 2^{\Omega r} = \Omega(k)$.
- \Rightarrow G' contains k vertex-disjoint cycles.
- \Rightarrow G contains k edge-disjoint cycles.

Plan of the proof; how to adapt to long cycles

$$g(k) := C \cdot I \cdot \log_2((k+1)(l+1))$$

- By induction on |E(G)|, may assume that
 - each long cycle has length larger than g(k), and
 - 'locally', each block is incident to at least three other blocks.
- Partition V(G) into approximate balls of radius r := g(k)/8.
- Each ball induces a tree-like graph with $2^{\Omega(r)}$ leaf-blocks. (otherwise short long cycle)
- Edges between two distinct balls are locally concentrated (essentially only between two leaf-blocks). (otherwise short long cycle)
- Contract each ball \rightarrow minor G' with minimum degree $\geq 2^{\Omega r} = \Omega(k)$.
- \Rightarrow G' contains k vertex-disjoint long cycles.
- \Rightarrow G contains k edge-disjoint long cycles.

- By induction on |E(G)|, may assume that
 - each copy of $H \in \mathcal{H}$ in G has more than g(k) edges.

- By induction on |E(G)|, may assume that
 - each copy of $H \in \mathcal{H}$ in G has more than g(k) edges.
- Partition V(G) into approximate balls of radius O(g(k)).

- By induction on |E(G)|, may assume that
 - each copy of $H \in \mathcal{H}$ in G has more than g(k) edges.
- Partition V(G) into approximate balls of radius O(g(k)).
- Show that each ball exhibits some form of exponential growth. Ie, has $2^{\Omega(g(k))}$ vertices that have a neighbour in some other ball.

- By induction on |E(G)|, may assume that
 - each copy of $H \in \mathcal{H}$ in G has more than g(k) edges.
- Partition V(G) into approximate balls of radius O(g(k)).
- Show that each ball exhibits some form of exponential growth. Ie, has $2^{\Omega(g(k))}$ vertices that have a neighbour in some other ball.
- Show that not too many such vertices have their neighbours in the *same* other ball.

- By induction on |E(G)|, may assume that
 - each copy of $H \in \mathcal{H}$ in G has more than g(k) edges.
- Partition V(G) into approximate balls of radius O(g(k)).
- Show that each ball exhibits some form of exponential growth. Ie, has $2^{\Omega(g(k))}$ vertices that have a neighbour in some other ball.
- Show that not too many such vertices have their neighbours in the *same* other ball.
- Contract balls \rightarrow minor G' with min. degree $\geq 2^{\Omega(g(k))} = \Omega(k^{1+\epsilon})$.

- By induction on |E(G)|, may assume that
 - each copy of $H \in \mathcal{H}$ in G has more than g(k) edges.
- Partition V(G) into approximate balls of radius O(g(k)).
- Show that each ball exhibits some form of exponential growth. Ie, has $2^{\Omega(g(k))}$ vertices that have a neighbour in some other ball.
- Show that not too many such vertices have their neighbours in the *same* other ball.
- Contract balls \rightarrow minor G' with min. degree $\geq 2^{\Omega(g(k))} = \Omega(k^{1+\epsilon})$.
- \Rightarrow G' (and hence G) contains a large clique minor.

- By induction on |E(G)|, may assume that
 - each copy of $H \in \mathcal{H}$ in G has more than g(k) edges.
- Partition V(G) into approximate balls of radius O(g(k)).
- Show that each ball exhibits some form of exponential growth. Ie, has $2^{\Omega(g(k))}$ vertices that have a neighbour in some other ball.
- Show that not too many such vertices have their neighbours in the *same* other ball.
- Contract balls \rightarrow minor G' with min. degree $\geq 2^{\Omega(g(k))} = \Omega(k^{1+\epsilon})$.
- \Rightarrow G' (and hence G) contains a large clique minor.
- \Rightarrow *G* contains *k* edge-disjoint subgraphs, each isomorphic to a graph in \mathcal{H} .

- By induction on |E(G)|, may assume that
 - each copy of $H \in \mathcal{H}$ in G has more than g(k) edges.
- Partition V(G) into approximate balls of radius O(g(k)).
- Show that each ball exhibits some form of exponential growth. Ie, has $2^{\Omega(g(k))}$ vertices that have a neighbour in some other ball.
- Show that not too many such vertices have their neighbours in the *same* other ball.
- Contract balls \rightarrow minor G' with min. degree $\geq 2^{\Omega(g(k))} = \Omega(k^{1+\epsilon})$.
- \Rightarrow G' (and hence G) contains a large clique minor.
- \Rightarrow *G* contains *k* edge-disjoint subgraphs, each isomorphic to a graph in \mathcal{H} .

• What other Erdős-Pósa problems are amenable to this packing-contraction approach?

- What other Erdős-Pósa problems are amenable to this packing-contraction approach?
- Does the edge-EP property hold for {cycles of length 0 mod m}? True for m = 2, unknown for $m \ge 3$.

- What other Erdős-Pósa problems are amenable to this packing-contraction approach?
- Does the edge-EP property hold for {cycles of length 0 mod m}? True for m = 2, unknown for $m \ge 3$.
- Characterize the planar graphs J for which $\mathcal{M}(J)$ has the edge-EP property.

Thank you for your attention!

- By induction on |V(G)|, may assume that girth $\geq g(k)$.
- Cover V(G) with vertex-disjoint balls of radius r := g(k)/8.
- derive that G has minimum degree 3
- show that each ball has $e^{\Omega(r)}$ leaves.
- every two balls are joined by at most one edge (otherwise short cycle)
- contract each ball \rightarrow minor G' with minimum degree $e^{\Omega(r)} \ge 3k$.
- \rightarrow G' contains k vertex-disjoint cycles.
- \rightarrow G contains k vertex-disjoint cycles