The list-packing number of graphs

Wouter Cames van Batenburg

Joint work with Stijn Cambie, Ewan Davies and Ross Kang

TU Delft, 1 april 2022

Independent set: subset of vertices without any edge between them.

Independent set: subset of vertices without any edge between them.

Proper colouring: partition into independent sets

Independent set: subset of vertices without any edge between them.

Proper colouring: partition into independent sets

Equivalent: adjacent vertices must have distinct colours.

A (proper) k-colouring is a partition of V(G) into $\leq k$ independent sets

Chromatic number $\chi(G)$: smallest integer k such that G admits a k-colouring.

A (proper) k-colouring is a partition of V(G) into $\leq k$ independent sets

Chromatic number $\chi(G)$: smallest integer k such that G admits a k-colouring.

Example

If G is a cycle of length n, then $\chi(G) = 2$ if n even, $\chi(G) = 3$ if n odd.

1 april!

In usual graph colouring: each vertex chooses one colour from a common set $[k] := \{1, 2, ..., k\}$.

In *list-colouring*, each vertex v has a private list of colours $L(v) \subseteq \mathbb{N}$ to choose one colour from.

same lists

distinct lists possible

In usual graph colouring: each vertex chooses one colour from a common set $[k] := \{1, 2, ..., k\}$.

In *list-colouring*, each vertex v chooses one colour from a private list $L(v) \subseteq \mathbb{N}$ of size k.

same lists

distinct lists possible

A *k-list-assignment* is a mapping $L:V(G)\to\mathbb{N}$ such that |L(v)|=k for each vertex v.

An L-colouring is a proper colouring such that each vertex v receives a colour from its list L(v).

The *list-chromatic number* $\chi_{\ell}(G)$ is the smallest integer k such that *every* k-list-assignment L admits an L-colouring.

A *k-list-assignment* is a mapping $L:V(G)\to\mathbb{N}$ such that |L(v)|=k for each vertex v.

An L-colouring is a proper colouring such that each vertex v receives a colour from its list L(v).

The *list-chromatic number* $\chi_{\ell}(G)$ is the smallest integer k such that *every* k-list-assignment L admits an L-colouring.

Note: $\chi(G) \leq \chi_{\ell}(G)$ for all graphs G.

A k-list-assignment is a mapping $L:V(G)\to\mathbb{N}$ such that |L(v)|=k for each vertex v.

An L-colouring is a proper colouring such that each vertex v receives a colour from its list L(v).

The *list-chromatic number* $\chi_{\ell}(G)$ is the smallest integer k such that *every* k-list-assignment L admits an L-colouring.

Note:
$$\chi(G) \leq \chi_{\ell}(G)$$
 for all graphs G .

Possible: $\chi(G) = 2$ and $\chi_{\ell}(G)$ arbitrarily large.

Possible: $\chi(G) = 2$ and $\chi_{\ell}(G)$ arbitrarily large.

A 2-list-assignment of a bipartite graph that does not admit a colouring. So $\chi_{\ell}(G)>2$.

List-colouring rephrased as an independent set problem

An *L*-colouring of *G* is equivalent to an independent set of size |V(G)| in the *cover graph* $\mathcal{B}_L(G)$:

Blow-up each vertex v to a clique on L(v). Then add an edge between (v, c_1) and (u, c_2) in $\mathcal{B}_L(G)$ iff $uv \in E(G)$ and the colours c_1, c_2 are equal.

List-colouring rephrased as an independent set problem

An *L*-colouring of *G* is equivalent to an independent set of size |V(G)| in the *cover graph* $\mathcal{B}_L(G)$:

Blow-up each vertex v to a clique on L(v). Then add an edge between (v, c_1) and (u, c_2) in $\mathcal{B}_L(G)$ iff $uv \in E(G)$ and the colours c_1, c_2 are equal.

Next step: Instead of one *L*-colouring, we wish to find many *L*-colourings in parallel.

Definition

Given a k-list-assignment L, an L-packing is a collection of k disjoint L-colourings.

Equivalently: a partition of $\mathcal{B}_L(G)$ into k independent sets of size |V(G)|.

Example: a 2-list assignment of C_4 that does not admit a packing.

Example: a 2-list assignment of C_4 that does not admit a packing.

Example: a 2-list assignment of C_4 that does not admit a packing.

Turns out: C₄ does admit a packing for every 3-list assignment.

Thus may make sense to define

Definition

List-packing number $\chi_{\ell}^{\star}(G) := \text{smallest } k \text{ such that } G \text{ admits an } L\text{-packing for every } k\text{-list assignment } L.$

Question: does $\chi_{\ell}^{\star}(G)$ exist for every graph?

First attempt: If k much larger than $\chi_{\ell}(G)$, can greedily find many disjoint L-colourings. But then no partition guaranteed!

Answer: yes, $\chi_{\ell}^{\star}(G)$ always exists. Follows for instance from:

Theorem (CCDK, 2021+)

For every graph G on n vertices,

$$\chi_{\ell}^{\star}(G) \leq n$$
, with equality iff $G = K_n$.

We also study a related stronger parameter $\chi_c^{\star}(G)$ called the correspondence packing number.

All you need to remember:

$$\chi_{\ell}^{\star}(G) \leq \chi_{c}^{\star}(G)$$
 for every G .

Correspondence colouring: arbitrary matchings between lists in the cover graph $\mathcal{B}_c(G)$ allowed.

 $\mathcal{B}_{\ell}(G)$ dictated by the colours

 $\mathcal{B}_c(G)$ with arbitrary matchings

 $\chi_c^{\star}(G) := \text{ smallest } k \text{ s.t. every size } k \text{ cover } \mathcal{B}_c(G) \text{ of } G$ admits a partition into k independent sets of size |V(G)|.

All you need to remember:

$$\chi_{\ell}^{\star}(G) \leq \chi_{c}^{\star}(G)$$
 for every G .

Recall:

$$\chi_{\ell}^{\star}(G) \leq n$$
.

Wide open (Catlin, Fischer, Kühn and Osthus, Yuster, 1980–2021):

$$\chi_c^{\star}(G) \leq n+1$$
?

Best known (Yuster, 2021):

$$\chi_c^{\star}(G) \leq (1.78 + o(1))n.$$

Intermezzo: simple bounds for χ_ℓ

Definition

A graph is d-degenerate if any subgraph of it contains a vertex of degree at most d. The degeneracy d(G) is the smallest d s.t. G is d-degenerate.

A simple bound:

Lemma

For every graph G,

$$\chi_{\ell}(G) \leq 1 + d(G).$$

Proof: induction on # vertices. Colour vertex of degree of at most d(G).

Some simple bounds:

Lemma

$$\chi_{\ell}(G) \leq 1 + d(G) =: 1 + \text{ degeneracy of } G.$$

Corollary

$$\chi_\ell(G) \leq 1 + \Delta(G) =: 1 + \text{ maximum degree of } G$$

Corollary

$$\chi_{\ell}(G) \leq n =:$$
 number of vertices of G .

Two influential more involved bounds:

Theorem (Erdős, Rubin, Taylor, 1980)

$$\chi_{\ell}(G) \leq \log_2(n) + 1$$
 for every bipartite G on n vertices.

Theorem (Johansson, 1996; Molloy, 2019)

$$\chi_{\ell}(G) \leq (1+o(1)) \frac{\Delta(G)}{\log(\Delta(G))}$$
 for every triangle-free G .

Extending bounds to list-packing

Recall:

$$\chi_{\ell}(G) \leq d+1$$
, for every d -degenerate G .

Theorem (CCDK, 2021+)

For any d-degenerate graph G,

$$\chi_{\ell}^{\star}(G) \leq \chi_{c}^{\star}(G) \leq 2d.$$

Conversely, for every integer $d \ge 2$, there exists a d-degenerate graph G with $\chi_c^{\star}(G) = 2d$ and $\chi_\ell^{\star}(G) \ge d + 2$.

Theorem (Alon, 1993 and 2000)

$$\chi_{\ell}(G) \geq C \cdot \log(d(G))$$
, for some uniform constant $C > 0$.

Combining with result that $\chi_{\ell}^{\star}(G) \leq 2d(G)$ yields:

Corollary

$$\chi_{\ell}^{\star}(G) \leq c^{\chi_{\ell}(G)}$$
, for some uniform constant $c > 1$.

Main open question: is there a $c \ge 2$ such that

$$\chi_{\ell}^{\star}(G) \leq c \cdot \chi_{\ell}(G)$$
?

Upper bound $\chi_{\ell}^{\star}(G) \leq 2 \cdot d$

Upper bound uses inducton on # vertices and Hall's Marriage Theorem.

H has minimum degree $\geq d$ and Hall's Marriage Theorem $\Rightarrow H$ has a perfect matching \Rightarrow can extend list-packing of G - v to G.

Example for d = 3.

Goal: construct a 3-degenerate graph G with a 4-list assignment L such that G is not L-colourable.

Lower bound construction: $\chi_{\ell}^{\star}(G) \geq d+2$

Lower bound construction: $\chi_{\ell}^{\star}(G) \geq d+2$

A 3-degenerate graph with an uncolourable 4-list assignment. So $\chi_\ell^\star \geq$ 5.

We have seen that the optimal bounds on χ_{ℓ} resp. χ_{ℓ}^{\star} in terms of degeneracy are distinct. What about maximum degree? Recall: $\chi_{\ell}(G) < \Delta(G) + 1$.

Question

Is
$$\chi_{\ell}^{\star}(G) \leq \Delta(G) + 1$$
?

Work in progress:

Yes if
$$\Delta(G) \leq 3$$
.

Also 'yes' if G bipartite. In general, we only know:

Theorem (CCDK, 2021+)

$$\chi_{\ell}^{\star}(G) \leq \Delta(G) + \chi_{\ell}(G) + 1$$

Bipartite bounded degree

Recall:

$$\chi_{\ell}(G) \leq (1 + o(1)) \frac{\Delta(G)}{\log(\Delta(G))},$$

if *G* is triangle-free.

Theorem (CCDK, 2021+)

For every bipartite *G*,

$$\chi_\ell^\star(G) \leq (1+o(1)) rac{\Delta(G)}{\log(\Delta(G))}.$$

Remark: the same bound holds for the related stronger parameter $\chi_c^{\star}(G)$; which is sharp up to factor 2!

Recall:

$$\chi_{\ell}(G) \leq \log_2(n) + 1$$

if G bipartite on n vertices.

Theorem (CCDK, 2021+)

For graphs G on n vertices, we have as $n \to \infty$,

$$\chi_{\ell}^{\star}(G) \leq \begin{cases} (1+o(1))\log_2 n & \text{if G bipartite,} \\ (1+o(1))\chi(G)\log n & \text{if $\chi(G)$ uniformly bounded as $n\to\infty$,} \\ (5+o(1))\chi(G)\log n & \text{in general.} \end{cases}$$

Remark: asymptotically matches the best bounds for $\chi_{\ell}(G)$.

$$\chi_{\ell}^{\star}(G) \leq (1 + o(1)) \log_2(n)$$
 if G bipartite on n vertices.

Proof sketch:

Let L be a k-list-assignment of a bipartite graph G.

Consider a uniformly random mapping from the *union* of the lists $\bigcup_{v} L(v)$ to $\{0,1\}$.

$$\chi_{\ell}^{\star}(G) \leq (1 + o(1)) \log_2(n)$$
 if G bipartite on n vertices.

Proof sketch:

Let L be a k-list-assignment of a bipartite graph G.

Consider a uniformly random mapping from the *union* of the lists $\bigcup_{v} L(v)$ to $\{0,1\}$.

$$\chi_{\ell}^{\star}(G) \leq (1 + o(1)) \log_2(n)$$
 if G bipartite on n vertices.

Proof (sketch):

Let L be a k-list-assignment of a bipartite graph G.

Consider a uniformly random mapping from the *union* of the lists $\bigcup_{v} L(v)$ to $\{0,1\}$.

Can extract a single list-colouring if every list at the top contains a 0 and every list at the bottom contains a 1.

Now consider k independent uniformly random such mappings μ_1, \ldots, μ_k from the list-union $\bigcup_{\nu} L(\nu)$ to $\{0,1\}$.

Now consider k independent uniformly random such mappings μ_1, \ldots, μ_k from the list-union $\bigcup_{v} L(v)$ to $\{0,1\}$.

Defines a random binary $k \times k$ matrix M(v) for each vertex v.

Now consider k independent uniformly random such mappings μ_1, \ldots, μ_k from the list-union $\bigcup_{v} L(v)$ to $\{0,1\}$.

Can extract a list-packing if every matrix at the top contains a 0-transversal and every matrix at the bottom contains a 1-transversal.

Definition

For a vertex v the **bad event** BAD(v) occurs if its associated random matrix has no 0-transversal (if v is at the top), resp. has no 1-transversal (if v is at the bottom).

We saw: there is a list-packing if non of the bad events BAD(v) occurs.

So **suffices** to show:

Prob(BAD(v) occurs for some v) < 1.

We use:

Key Lemma (CCDK 2021+, Everett and Stein 1973)

Let 0 . Let <math>A be a random $k \times k$ -matrix with independent Bernoulli(p) distributed elements. Then

Prob (A has no 1-transversal) = $2k(1-p)^k(1+o(1))$ as $k \to \infty$.

We use:

Key Lemma (CCDK 2021+, Everett and Stein 1973)

Let 0 . Let <math>A be a random $k \times k$ -matrix with independent Bernoulli(p) distributed elements. Then

Prob (A has no 1-transversal) =
$$2k(1-p)^k(1+o(1))$$
 as $k\to\infty$.

Implies for every vertex v:

$$\mathsf{Prob}(\mathsf{BAD}(v) \; \mathsf{occurs}) \leq (1 + o(1)) \cdot 2k \left(\frac{1}{2}\right)^k.$$

We use:

Key Lemma (CCDK 2021+, Everett and Stein 1973)

Let 0 . Let <math>A be a random $k \times k$ -matrix with independent Bernoulli(p) distributed elements. Then

Prob (A has no 1-transversal) =
$$2k(1-p)^k(1+o(1))$$
 as $k\to\infty$.

Implies for every vertex v:

$$\mathsf{Prob}(\mathsf{BAD}(v) \; \mathsf{occurs}) \leq (1 + o(1)) \cdot 2k \left(\frac{1}{2}\right)^k.$$

So by union bound,

$$\operatorname{Prob}(\mathsf{BAD}(v) \text{ occurs for some } v) \leq (1+o(1))n \cdot \frac{k}{2^{k-1}} < 1$$

as
$$n \to \infty$$
, provided the lists have size $k \ge (1 + o(1)) \log_2(n)$.

Concludes proof that

 $\chi_{\ell}^{\star}(G) \leq (1 + o(1)) \log_2(n)$ if G bipartite on n vertices.

Summary

We studied successively stronger parameters,

$$\chi \le \chi_{\ell} \le \chi_{\ell}^{\star} \le \chi_{c}^{\star}.$$

Proved several bounds on $\chi_\ell^\star, \chi_c^\star$ that \sim match the best bounds on χ_ℓ .

Open problems

- Planar graphs? We know $5 \le \chi_{\ell}^{\star}(G) \le 10$.
- If G is d-degenerate? We know $d+2 \le \chi_{\ell}^{\star}(G) \le 2d$.
- Maximum degree: is $\chi_{\ell}^{\star}(G) \leq \Delta(G) + 1$?
- Colouring the edges instead of the vertices.
- Is $\chi_{\ell}^{\star}(G) \leq c \cdot \chi_{\ell}(G)$, for some constant $c \geq 2$?
- ...

Thank you for your attention!

For each vertex v, let $L(v)_j$ denote the j-th colour in L(v), wrt some arbitrary order. Then form the $k \times k$ matrix M_v given by

$$M_{\nu}(i,j) = \mu_i(L(\nu)_j)$$

 M_{ν} has a 1-transversal if it has k elements equal to 1 that pairwise do not share a row or column. (similar for 0-transversal)

For $v \in A$, a *bad event* is that M_v does not have a 0-transversal. For $v \in B$, a *bad event* is that M_v does not have a 1-transversal.

If no bad event occurs, we can construct a list-packing c_1, \ldots, c_k : Choose the guaranteed transversal of M_v and for each $i \in [k]$, choose $c_i(v)$ to be the element of L(v) that corresponds to the i-th element of that transversal.

- Because we choose according to a transversal, $c_1(v), \ldots, c_k(v)$ indeed form a partition of L(v).
- Each colouring c_i is proper because on A we only choose colours that have been mapped to "0" by μ_i , while on B we only choose colours that have been mapped to "1" by μ_i .

Remains to show: there exists no bad event. We derive:

Let 0 be a real number. Let <math>A be a random $k \times k$ -matrix with independent Bernoulli(p) distributed elements. Then

A has no 1- transversal, with probability $2k(1-p)^k(1+o(1))$ as $k\to\infty$.

Implies: Prob(bad event for M(v)) $\leq (1 + o(1)) \cdot 2k(\frac{1}{2})^k$. By union bound,

Prob(some bad event occurs) $\leq (1 + o(1))n \cdot k/2^{k-1} < 1$

as $n \to \infty$, provided $k \ge (1 + o(1)) \log_2(n)$.