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Independent set: subset of vertices without any edge between them.

GAOAD;

Proper colouring: partition into independent sets

Equivalent: adjacent vertices must have distinct colours.
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A (proper) k-colouring is a partition of V(G) into < k independent sets J

Chromatic number x(G): smallest integer k such that G admits a
k-colouring. J

If G is a cycle of length n, then x(G) =2 if n even, x(G) = 3 if n odd.




Thank you for your attention!






In usual graph colouring: each vertex chooses one colour from a common
set [k] :=={1,2,...,k}.

In list-colouring, each vertex v has a private list of colours L(v) C N to
choose one colour from.

same lists distinct lists possible

Wouter Cames van Batenburg (TU Delft) List-packing graphs 6/51



In usual graph colouring: each vertex chooses one colour from a common
set [k] :=={1,2,...,k}.

In list-colouring, each vertex v chooses one colour from a private list
L(v) C N of size k.

same lists distinct lists possible
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A k-list-assignment is a mapping L : V(G) — N such that |L(v)| = k for
each vertex v.

An L-colouring is a proper colouring such that each vertex v receives a
colour from its list L(v).

The list-chromatic number x;(G) is the smallest integer k such that every
k-list-assignment L admits an L-colouring.
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A k-list-assignment is a mapping L : V(G) — N such that |L(v)| = k for
each vertex v.

An L-colouring is a proper colouring such that each vertex v receives a
colour from its list L(v).

The list-chromatic number x;(G) is the smallest integer k such that every
k-list-assignment L admits an L-colouring.

Note: x(G) < x¢(G) for all graphs G. J
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A k-list-assignment is a mapping L : V(G) — N such that |L(v)| = k for
each vertex v.

An L-colouring is a proper colouring such that each vertex v receives a
colour from its list L(v).

The list-chromatic number x;(G) is the smallest integer k such that every
k-list-assignment L admits an L-colouring.

Note: x(G) < x¢(G) for all graphs G. J

Possible: x(G) = 2 and x4(G) arbitrarily large.
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Possible: x(G) = 2 and x4(G) arbitrarily large. J
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A 2-list-assignment of a bipartite graph that does not admit a colouring.
So X@(G) > 2.
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List-colouring rephrased as an independent set problem

An L-colouring of G is equivalent to an independent set of size |V/(G)| in
the cover graph B(G):

Blow-up each vertex v to a clique on L(v). Then add an edge between
(v,c1) and (u, @) in Bi(G) iff uv € E(G) and the colours ci, ¢; are equaI.J

G with lists L BL(G) indep. set in B.(G)
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An L-colouring of G is equivalent to an independent set of size |V/(G)| in
the cover graph B (G):

Blow-up each vertex v to a clique on L(v). Then add an edge between
(v,c1) and (u, c2) in BL(G) iff uv € E(G) and the colours c1, ¢p are equaI.J
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Next step: Instead of one L-colouring, we wish to find many L-colourings
in parallel.

Definition

Given a k-list-assignment L, an L-packing is a collection of k disjoint
L-colourings.

Equivalently: a partition of B;(G) into k independent sets of size |V/(G)|.
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Example: a 2-list assignment of C; that does not admit a packing.
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Example: a 2-list assignment of C; that does not admit a packing.

e N
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Example: a 2-list assignment of (4 that does not admit a packing.

Turns out: C4 does admit a packing for every 3-list assignment.
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Thus may make sense to define

Definition

List-packing number x;(G) := smallest k such that G admits an
L-packing for every k-list assignment L.

Question: does x(G) exist for every graph?

First attempt: If kK much larger than x,(G), can greedily find many
disjoint L-colourings. But then no partition guaranteed!
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Answer: yes, x;(G) always exists. Follows for instance from:

Theorem (CCDK, 2021+)

For every graph G on n vertices,

X7(G) < n, with equality iff G = K.
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We also study a related stronger parameter x%(G) called the
correspondence packing number.

All you need to remember:

X7(G) < xZ(G) for every G. J
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Correspondence colouring: arbitrary matchings between lists in the cover
graph B.(G) allowed.
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B(G) dictated by the colours B(G) with arbitrary matchings

X+(G) := smallest k s.t. every size k cover B.(G) of G

admits a partition into k independent sets of size |V/(G)].
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All you need to remember:

X7 (G) < x5(G) for every G. J

Recall:
x7(G) < n.

Wide open (Catlin, Fischer, Kiihn and Osthus, Yuster, 1980-2021):
Xe(G) <n+17
Best known (Yuster, 2021):

X5(G) < (1.78 + o(1))n.
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Intermezzo: simple bounds for y,

Definition
A graph is d-degenerate if any subgraph of it contains a vertex of degree
at most d. The degeneracy d(G) is the smallest d s.t. G is d-degenerate.

A simple bound:

For every graph G,

xe(G) <1+ d(G).

Proof: induction on # vertices. Colour vertex of degree of at most d(G).
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Some simple bounds:

x¢(G) <1+ d(G)=:1+ degeneracy of G.

v
Corollary

xe(G) <1+ A(G) =:1+ maximum degree of G

Corollary

X¢(G) < n=: number of vertices of G .
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Two influential more involved bounds:

Theorem (Erdés, Rubin, Taylor, 1980)

X¢(G) < logy(n) + 1 for every bipartite G on n vertices.

Theorem (Johansson, 1996 ; Molloy, 2019)

A(6)

for every triangle-free G.

Wouter Cames van Batenburg (TU Delft) List-packing graphs 23 /51



Extending bounds to list-packing

Recall:
x¢(G) < d+ 1, for every d-degenerate G.

Theorem (CCDK, 2021+)
For any d-degenerate graph G,

xi(G) < xe(G) < 2d.

Conversely, for every integer d > 2, there exists a d-degenerate graph G
with x%(G) = 2d and x;(G) > d + 2.
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Theorem (Alon, 1993 and 2000)

x¢(G) > C - log(d(G)), for some uniform constant C > 0.

Combining with result that x;(G) < 2d(G) yields:

Y3 (G) < cX¢(C) for some uniform constant ¢ > 1.

Main open question: is there a ¢ > 2 such that

xi(G) < ¢ xe(G)?
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Upper bound

Upper bound uses inducton on # vertices
and Hall's Marriage Theorem.
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vertex v of degree < d in graph G:

Auxiliary bipartite graph H:

2d disj. colourings in 2d colours in L(v):

list-packing of G-v :

Make p; cJ. an edge of H iff
colouring v with cj is a valid extension of H;

H has minimum degree > d and Hall's Marriage Theorem = H has a
perfect matching = can extend list-packing of G — v to G. [
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Lower bound construction: x7(G) > d + 2

Example for d = 3.

Goal: construct a 3-degenerate graph G with a 4-list assignment L such
that G is not L-colourable.
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Lower bound construction: x7(G) > d + 2

List: {1,2,3,4} {5,2,3,4} {5,1,3,4} {1,2,3,4}




Lower bound construction: x7(G) > d + 2
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Lower bound construction: x7(G) > d + 2

List: {1,2,3,4} {5,2,3,4} {5,1,3,4} {1,2,3,4}




Lower bound construction: x7(G) > d + 2

Any permutation you like
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Lower bound construction: x7(G) > d + 2
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List: {1,2,3,4} {6,2,3,4} {5,1,3,4} {1,234} ... {1,2,3,4}

A 3-degenerate graph with an uncolourable 4-list assignment.
So xj > 5.

List-packing graphs
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We have seen that the optimal bounds on x, resp. xj in terms of
degeneracy are distinct. What about maximum degree?
Recall: x/(G) < A(G) + 1.

Is x;(G) < A(G)+17

v

Work in progress:
Yes if A(G) < 3.

N,

Also ‘yes' if G bipartite. In general, we only know:

Theorem (CCDK, 2021+)

x;(G) < A(G) + xe(G) +1
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Bipartite bounded degree

Recall:
xe(G) < (1+0(1))

if G is triangle-free.

Theorem (CCDK, 2021+)

For every bipartite G,

V(G < (1+ o(l))%.

Remark: the same bound holds for the related stronger parameter x%(G);
which is sharp up to factor 2!
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Bipartite on n vertices

Recall:

Xe(G) < logy(n) +1

if G bipartite on n vertices.

Theorem (CCDK, 2021+)

For graphs G on n vertices, we have as n — oo,

(14+0(1))log, n if G bipartite,
X7 (G) < ¢ (1+0(1))x(G)logn if x(G) uniformly bounded as n — oo,
(5+0(1))x(G)logn in general.

Remark: asymptotically matches the best bounds for x,(G).
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Bipartite on n vertices

X7 (G) < (14 o(1)) logy(n) if G bipartite on n vertices. J

Proof sketch:
Let L be a k-list-assignment of a bipartite graph G.

Consider a uniformly random mapping from the union of the lists |, L(v)
to {0,1}.
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Bipartite on n vertices

X7 (G) < (14 o(1)) logy(n) if G bipartite on n vertices. J

Proof sketch:
Let L be a k-list-assignment of a bipartite graph G.
Consider a uniformly random mapping from the union of the lists |, L(v)

to {0,1}.

o a 0 P
¢ U
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Bipartite on n vertices

X;(G) < (14 o(1)) logy(n) if G bipartite on n vertices. J

Proof (sketch):
Let L be a k-list-assignment of a bipartite graph G.

Consider a uniformly random mapping from the union of the lists |, L(v)
to {0,1}.

Can extract a single list-colouring if every list at the top contains a 0 and
every list at the bottom contains a 1.
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Bipartite on n vertices

Now consider k independent uniformly random such mappings 1, ..., tk
from the list-union |, L(v) to {0,1}.
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Bipartite on n vertices

Now consider k independent uniformly random such mappings 1, ..., tk
from the list-union |, L(v) to {0,1}.

Defines a random binary k x k matrix M(v) for each vertex v.
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Bipartite on n vertices

Now consider k independent uniformly random such mappings p1,. .., tik
from the list-union J, L(v) to {0, 1}.

Can extract a list-packing if every matrix at the top contains a

0-transversal and every matrix at the bottom contains a 1-transversal.
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Definition

For a vertex v the bad event BAD(v) occurs if its associated random
matrix has no O-transversal (if v is at the top), resp. has no 1l-transversal
(if v is at the bottom).

We saw: there is a list-packing if non of the bad events BAD(v) occurs.

So suffices to show:

Prob(BAD(v) occurs for some v) < 1.

Wouter Cames van Batenburg (TU Delft) List-packing graphs 42/51



We use:

Key Lemma (CCDK 2021+, Everett and Stein 1973)

Let 0 < p < 1. Let A be a random k X k-matrix with independent
Bernoulli(p) distributed elements. Then

Prob (A has no 1-transversal) = 2k(1 — p)*(1 + o(1)) as k — oc.

O
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We use:
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Let 0 < p < 1. Let A be a random k X k-matrix with independent
Bernoulli(p) distributed elements. Then

Prob (A has no 1-transversal) = 2k(1 — p)*(1 + o(1)) as k — oc.

Implies for every vertex v:

k
Prob(BAD(v) occurs) < (1 + o(1)) - 2k <1> .

O
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We use:

Key Lemma (CCDK 2021+, Everett and Stein 1973)

Let 0 < p < 1. Let A be a random k X k-matrix with independent
Bernoulli(p) distributed elements. Then

Prob (A has no 1-transversal) = 2k(1 — p)*(1 + o(1)) as k — oc.

Implies for every vertex v:
1 k
Prob(BAD(v) occurs) < (1 + o(1)) -2 () .

So by union bound,

k
Prob(BAD(v) occurs for some v) < (14 o(1))n- k-1 <1

as n — 0o,
provided the lists have size k > (1 + o(1)) logy(n).
L]
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Concludes proof that

X7(G) < (14 o(1))logy(n) if G bipartite on n vertices. ]
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We studied successively stronger parameters,

X <xe <x; < Xk

Proved several bounds on X7, x¢ that ~ match the best bounds on x,.
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Open problems

Planar graphs? We know 5 < x7(G) < 10.

If G is d—degenerate? We know d 42 < x7(G) < 2d.
Maximum degree: is x;(G) < A(G) + 17

Colouring the edges instead of the vertices.

Is x7(G) < ¢ x¢(G), for some constant ¢ > 27
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Thank you for your attention!
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For each vertex v, let L(v); denote the j-th colour in L(v), wrt some
arbitrary order. Then form the k x k matrix M, given by

M, (i, j) = pi(L(v);)

M, has a 1-transversal if it has k elements equal to 1 that pairwise do not
share a row or column. (similar for O-transversal)

For v € A, a bad event is that M, does not have a O-transversal. For

v € B, a bad event is that M, does not have a 1-transversal.
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If no bad event occurs, we can construct a list-packing c1, ..., ck: Choose
the guaranteed transversal of M, and for each i € [k], choose ¢j(v) to be
the element of L(v) that corresponds to the i-th element of that
transversal.
@ Because we choose according to a transversal, ci(v),. .., ck(v) indeed
form a partition of L(v).
@ Each colouring ¢; is proper because on A we only choose colours that
have been mapped to “0” by u;, while on B we only choose colours
that have been mapped to “1 " by pu;.
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Remains to show: there exists no bad event. We derive:

Let 0 < p <1 be a real number. Let A be a random k x k-matrix with
independent Bernoulli(p) distributed elements. Then

A has no 1 — transversal, with probability 2k(1 — p)*(1+4 o(1)) as k — oc.

Implies: Prob( bad event for M(v)) < (1 + o(1)) - 2k(%)k_
By union bound,

Prob( some bad event occurs) < (14 o(1))n- k/271 <1

as n — oo, provided k > (1 + o(1)) log,(n).
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