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G graph on n vertices
Independence number: o(G) = max {k | 3k pairwise nonadjacent vertices}

‘Subcubic’ = maximum degree at most 3

How large is @ in subcubic triangle-free graphs G 7
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Independence ratio.

In general, determining a(G) is NP-hard, even when restricting to
planar subcubic triangle-free graphs.
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Independence ratio.

In general, determining a(G) is NP-hard, even when restricting to
planar subcubic triangle-free graphs.

=
More feasible goal:

Given a (nice) graph class G, find largest ¢ € (0, 1] such that for all G € G:
a(G)

n

>cC
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Planar graphs

Theorem (four-colour theorem, 1976, Appel and Haken)

G planar = G is 4-colourable.
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Planar graphs

Theorem (four-colour theorem, 1976, Appel and Haken)

G planar = G is 4-colourable.

G planar = a(G) > 7.

Every known proof uses the four-colour theorem!
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Planar graphs

Theorem (four-colour theorem, 1976, Appel and Haken)

G planar = G is 4-colourable.

G planar = a(G) > 7.

What if we also forbid triangles?
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Triangle-free planar

Theorem (1959, Grotzsch)

G triangle-free planar = G is 3-colourable = «(G)

Y
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Triangle-free planar

Theorem (1959, Grotzsch)

G triangle-free planar = G is 3-colourable = «(G)

Y

Theorem (1985, Jones)

c +1
G triangle-free planar = a(G) > =,

Sharp for infinitely many graphs
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Graph class | a > | Due to

planar 4-colour theorem (1976)

+ B

3
-

planar triangle-free Grétszch (1959), Jones (1985)

« ‘
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Graph class | a > | Due to

planar 4-colour theorem (1976)

[y

S
+ B

planar triangle-free Grétszch (1959), Jones (1985)

« ‘

Can we do better than %?
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Graph class | a > | Due to

planar 4-colour theorem (1976)

+ NI

3
-

Grotszeh (1959), Jones (1985)

planar triangle-free

« ‘

Can we do better than %?

Yes, if we assume G is subcubic.
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Subcubic triangle-free

Theorem (1979, Statton)

G subcubic triangle-free = a(G) > &n.
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Subcubic triangle-free

Theorem (1979, Statton)

G subcubic triangle-free = a(G) > &n.

Only two tight examples among connected graphs [Heckman '08].

n=14 a=5 n=14 «a=5
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Subcubic triangle-free and connected

Theorem (1995, Fraughnaugh and Locke)

S 11 4
G connected subcubic triangle-free = a(G) > 351 — 35.

The same two graphs are the only tight examples:

n=14 a=5 n=14 «a=5
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Subcubic triangle-free and connected

Theorem (1995, Fraughnaugh and Locke)

G connected subcubic triangle-free = a(G) > Itn— 4.

Asymptotically tight; infinitely many graphs with o = %n — %
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Graph class | a> | Due to

planar 1 4-colour theorem (1976)
planar triangle-free ”‘gl Grotszch (1959), Jones (1985)
subcubic triangle-free % Statton (1979)

subcubic triangle-free | 117=% | Fraughnaugh and Locke (1995)
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Graph class | a> | Due to
planar 1 4-colour theorem (1976)
planar triangle-free ”‘gl Grotszch (1959), Jones (1985)
subcubic triangle-free % Statton (1979)
subcubic triangle-free 11§64 Fraughnaugh and Locke (1995)

1,

Can we do better than 30 ¢
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Graph class | a> | Due to

planar 1 4-colour theorem (1976)
planar triangle-free ”‘gl Grotszch (1959), Jones (1985)
subcubic triangle-free % Statton (1979)

subcubic triangle-free 11§64 Fraughnaugh and Locke (1995)

1,

Can we do better than 30 ¢

Yes, if we additionally assume G is planar.
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Graph class | o> | Due to

planar 1 4-colour theorem (1976)
+

planar triangle-free L | Grétszch (1959), Jones (1985)

3
subcubic triangle-free % Statton (1979)

subcubic triangle-free 1137074 Fraughnaugh and Locke (1995)

Conjectured (1976) by

. . 3n Albertson, Bollébas and Tucker,
planar subcubic triangle-free S proved by

Heckman and Thomas (2006)
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Theorem (2006, Heckman and Thomas)

oolw
S

G planar subcubic triangle-free = «a(G) >

Sharp for infinitely many bad graphs, e.g. :
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Graph class | a > | Due to
planar g 4-colour theorem (1976)
planar triangle-free %1 Grétszch (1959), Jones (1985)
subcubic triangle-free % Statton (1979)
subcubic triangle-free 113:70_4 Fraughnaugh and Locke (1995)
planar subcubic triangle-free % Heckman and Thomas (2006)
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Graph class | a > | Due to
planar g 4-colour theorem (1976)
planar triangle-free %1 Grétszch (1959), Jones (1985)
subcubic triangle-free % Statton (1979)
subcubic triangle-free 113:70_4 Fraughnaugh and Locke (1995)
planar subcubic triangle-free % Heckman and Thomas (2006)

Wouter Cames van Batenburg (ULB)

Question: can we relax the planarity condition?
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Graph class | a > | Due to
planar g 4-colour theorem (1976)
planar triangle-free %1 Grétszch (1959), Jones (1985)
subcubic triangle-free % Statton (1979)
subcubic triangle-free 113:70_4 Fraughnaugh and Locke (1995)
planar subcubic triangle-free % Heckman and Thomas (2006)

Wouter Cames van Batenburg (ULB)

Question: can we relax the planarity condition?

Old conjecture: suffices to forbid six non-planar subgraphs

Large independent sets; beyond planarity
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Relaxing planarity

Instead of planarity:
family F of six non-planar forbidden induced subgraphs?
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Relaxing planarity

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G F-free subcubic triangle-free = a(G) > 3n.
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Relaxing planarity

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G F-free subcubic triangle-free = a(G) > 3n.
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Relaxing planarity

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G F-free subcubic triangle-free = a(G) > 3n.

Conjecture (1995, Fraughnaugh and Locke)

G 2-connected subcubic triangle-free = a(G) > n — 7.
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Relaxing planarity

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G F-free subcubic triangle-free = a(G) > 3n.

Conjecture (1995, Fraughnaugh and Locke)

G 2-connected subcubic triangle-free = a(G) > n — 7.

Definition: a graph G (on at least three vertices) is called 2-connected if
G — v is connected for every vertex v.
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Relaxing planarity

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G F-free subcubic triangle-free = a(G) > 3n.

Conjecture (1995, Fraughnaugh and Locke)

G 2-connected subcubic triangle-free = a(G) > n — 7.

Theorem (20194, C., Goedgebeur and Joret)
Both conjectures are true :-)
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Graph class | a > | Due to

planar 4-colour theorem (1976)

planar triangle-free Grotszch (1959), Jones (1985)

3
subcubic triangle-free ?—Z Statton (1979)

subcubic triangle-free % Fraughnaugh and Locke (1995)
planar subcubic triangle-free :%” Heckman and Thomas (2006)
F-free subcubic triangle-free %’ C, Goedgebeur, Joret (2019+)

subcubic triangle-free | === | C, Goedgebeur, Joret (2019+)
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Graph class | a > | Due to

planar 4-colour theorem (1976)

planar triangle-free Grotszch (1959), Jones (1985)

3
subcubic triangle-free ?—Z Statton (1979)

subcubic triangle-free % Fraughnaugh and Locke (1995)
planar subcubic triangle-free :%” Heckman and Thomas (2006)
F-free subcubic triangle-free %’ C, Goedgebeur, Joret (2019+)

subcubic triangle-free | === | C, Goedgebeur, Joret (2019+)

Our technical theorem generalizes all of the above results concerning
subcubic graphs
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Graph class | a > | Sharp due to

planar 7 oo many
planar triangle-free | 2t | oo many
subcubic triangle-free % oo many (ess. two members of F)
connected subcubic triangle-free 11;0—4 two members of F
planar subcubic triangle-free % o0 many
oo many graphs that are
. . irth
F-free subcubic triangle-free 3n 3-connected, girth 5,
8 non-planar and in fact with

arbitrarily large clique minors

2-connected subcubic triangle-free | 7= | three members of F

Wouter Cames van Batenburg (ULB) Large independent sets; beyond planarity 18 /37



oo many sharp examples

—f— 3n
a=6= g

Use as a building block.
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oo many sharp examples

3-connected, non-planar and o = %.
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oo many sharp examples

O SO

3
WA

N
3-connected, non-planar and a = 3
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oo many sharp examples

L= SO

NS Te>

3-connected, girth 5, non-planar and a = .
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Motivation for the technical theorem

Theorem, C., Goedgebeur, Joret (2019+)
If G is F-free subcubic triangle-free, then o(G) >

g

Enough to show the statement when

@ G connected, and

e G critical, meaning (G — e) > a(G) Ve € E(G)
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A sparsity measure:

9n3 4+ 10ny + 11n; + 12ng
o=

_ 6n—[E(G)|
24 N 12
where n; := number of vertices of degree i.
Remarks:
p>gn;

3 1 3
3n— ﬁw > gn because n € Z.
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A sparsity measure:

9n3 4+ 10ny + 11n; + 12ng
o=

_ 6n—|E(G)|
24 N 12
where n; := number of vertices of degree i.
Remarks:
p>gn;
%n — lew > %n because n € Z.
1
Hence, to show «a > %n it is enough to prove |a > u — -
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A sparsity measure:

9n3 4+ 10ny + 11n; + 12ng
o=

_ 6n—|E(G)|
24 N 12
where n; := number of vertices of degree i.
Remarks:
p>gn;
%n — lew > %n because n € Z.
1
Hence, to show «a > %n it is enough to prove |a > u — -

Problem: there exist bad graphs with a = p — %
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Definition of bad graphs

is bad and

every 8-augmentation of a bad graph is bad:

Large independent sets; beyond planarity
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Attempt 2: Show that a > u — 1—12 unless G is bad.

This is true, however ...

Problem: to prove it, we need to consider a slightly stronger statement.

This involves dangerous graphs, some of which attain o = pu — 1—12
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Dangerous graphs

Technical recursive definition.

(Gs and the following are the smallest dangerous graphs)

XS S A
K S
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Main technical theorem (CvB-G-J '19+)
Suppose

@ G F-free subcubic and triangle-free
@ G connected and critical, and

@ G not bad

thenaZu—l—z.
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Main technical theorem (CvB-G-J '19+)
Suppose

@ G F-free subcubic and triangle-free
@ G connected and critical, and
@ G not bad

thenaZu—%.

If moreover

@ G has > 3 degree-2 vertices and
@ G not dangerous and has no bad subgraph

then a > 1 .
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Generalization: allowing triangles

Define the refined measure

_6n—e—2t

p(G) : T

where e is the number of edges in G and t is the maximum number of
vertex-disjoint triangles.

Theorem (2019+, C, Goedgebeur and Joret)

Let G be a critical connected subcubic graph which is not isomorphic to
Ka or any member of F. Then

o a(G) = p*(G) — & if G is bad or almost bad
o a(G) > u*(G) — & otherwise.
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Plan of the proof

G minimum counter-example

@ G almost 3-connected: If X is a 2-cutset then G — X has exactly two
components, with one isomorphic to K1 or K>

@ G has no bad subgraph

@ Deal with degree-2 vertices:

e case where neighbors have both degree 2
e case where neighbors have both degree 3
o case where neighbors have degree 2 and 3

— G is cubic and 3-connected
@ G has no 4-cycle
@ G has no 6-cycle

@ G has no dangerous subgraph (in particular, no 5-cycle)

Final argument: Local structure around a shortest even cycle
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Open problems

G F-free subcubic triangle-free

o a(G) > 3 is still best possible if we also forbid four-cycles.
What happens for even larger girth?

e Fractional chromatic number yf(G) at most §?
(cp. conjecture Heckman and Thomas '08)
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D @ @

Thank you for your attention!

) D ()
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An empty slide
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Open problems

<14

Staton '79 If G subcubic and triangle-free then =

n
«

. n
Recall: 7 < xr

Dvofak, Sereni, Volec '14 (conjectured by Heckman & Thomas '01)
If G subcubic and triangle-free then xr < 15—4

Could the upper bound on xf be improved if we further assume

@ G connected, or
@ G 2-connected, or
e G planar, or

@ G has none of the 6 exceptional graphs as subgraph?
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Plan of the proof; how the graphs of F emerge.

G minimum counter-example
@ G almost 3-connected: If X is a 2-cutset then G — X has exactly two
components, with one isomorphic to Kj or K>.
@ G has no bad subgraph. = Fi1, Fl(;), F1(S)-
@ Deal with degree-2 vertices:

e case where neighbors have both degree 2.
e case where neighbors have both degree 3 = red. to dangerous graphs.
e case where neighbors have degree 2 and 3 = red. to 8-augmentation.

— G is cubic and 3-connected = henceforward only need: o > p — %
@ G has no 4-cycle
: 1) £
@ G has no 6-cycle = Fj,”, F,”.

@ G has no dangerous subgraph (in particular, no 5-cycle) = Fp.

Final argument: Local structure around a shortest even cycle
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Final argument (simplified):

Shortest even cycle 1,2,...,2k in G.
G’ := G minus red vertices.
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Final argument (simplified):

Shortest even cycle 1,2,...,2k in G.
G’ := G minus red vertices.

a(G) —a(G) > k
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Final argument (simplified):

Shortest even cycle 1,2,...,2k in G.
G’ := G minus red vertices.

a(G) —a(G) > k

9 1 p
= 3k'ﬂ*k'ﬂ—M(G)*M(G)-

Apply induction to a(G") — u(G’) for desired bound on a(G) — u(G). [
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Definition dangerous graphs

Cs is dangerous

Join of two bad graphs is dangerous:

LA T

/ or \ or

o= — % if G dangerous.
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