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G graph on n vertices

Independence number: α(G ) = max {k | ∃k pairwise nonadjacent vertices}

‘Subcubic’ = maximum degree at most 3

How large is α(G)
n in subcubic triangle-free graphs G?
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Independence ratio.

In general, determining α(G ) is NP-hard, even when restricting to
planar subcubic triangle-free graphs.

⇒
More feasible goal:

Given a (nice) graph class G, find largest c ∈ (0, 1] such that for all G ∈ G:

α(G )

n
≥ c .
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Planar graphs

Theorem (four-colour theorem, 1976, Appel and Haken)

G planar ⇒ G is 4-colourable.

Corollary

G planar ⇒ α(G ) ≥ n
4 .

Every known proof uses the four-colour theorem!

What if we also forbid triangles?
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Triangle-free planar

Theorem (1959, Grötzsch)

G triangle-free planar ⇒ G is 3-colourable ⇒ α(G ) ≥ n
3 .

Theorem (1985, Jones)

G triangle-free planar ⇒ α(G ) ≥ n+1
3 .

Sharp for infinitely many graphs
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Graph class α ≥ Due to

planar n
4 4-colour theorem (1976)

planar triangle-free n+1
3 Grötszch (1959), Jones (1985)

Can we do better than 1
3 ?

Yes, if we assume G is subcubic.
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Subcubic triangle-free

Theorem (1979, Statton)

G subcubic triangle-free ⇒ α(G ) ≥ 5
14n.

Only two tight examples among connected graphs [Heckman ’08].

n = 14 α = 5 n = 14 α = 5
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Subcubic triangle-free and connected

Theorem (1995, Fraughnaugh and Locke)

G connected subcubic triangle-free ⇒ α(G ) ≥ 11
30n −

4
30 .

The same two graphs are the only tight examples:

n = 14 α = 5 n = 14 α = 5
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Subcubic triangle-free and connected

Theorem (1995, Fraughnaugh and Locke)

G connected subcubic triangle-free ⇒ α(G ) ≥ 11
30n −

4
30 .

Asymptotically tight; infinitely many graphs with α = 11
30n −

2
15 .
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Graph class α ≥ Due to

planar n
4 4-colour theorem (1976)

planar triangle-free n+1
3 Grötszch (1959), Jones (1985)

subcubic triangle-free 5n
14 Statton (1979)

connected subcubic triangle-free 11n−4
30 Fraughnaugh and Locke (1995)

Can we do better than 11
30 ?

Yes, if we additionally assume G is planar.
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Graph class α ≥ Due to

planar n
4 4-colour theorem (1976)

planar triangle-free n+1
3 Grötszch (1959), Jones (1985)

subcubic triangle-free 5n
14 Statton (1979)

connected subcubic triangle-free 11n−4
30 Fraughnaugh and Locke (1995)

planar subcubic triangle-free 3n
8

Conjectured (1976) by
Albertson, Bollóbas and Tucker,
proved by
Heckman and Thomas (2006)
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Theorem (2006, Heckman and Thomas)

G planar subcubic triangle-free ⇒ α(G ) ≥ 3
8n

Sharp for infinitely many bad graphs, e.g. :

α = 3, n = 8.

α = 6, n = 16.

Wouter Cames van Batenburg (ULB) Large independent sets; beyond planarity 12 / 37



Graph class α ≥ Due to

planar n
4 4-colour theorem (1976)

planar triangle-free n+1
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Question: can we relax the planarity condition?

Old conjecture: suffices to forbid six non-planar subgraphs

Wouter Cames van Batenburg (ULB) Large independent sets; beyond planarity 13 / 37



Graph class α ≥ Due to

planar n
4 4-colour theorem (1976)

planar triangle-free n+1
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Relaxing planarity

Instead of planarity:
family F of six non-planar forbidden induced subgraphs?
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Relaxing planarity

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G F-free subcubic triangle-free ⇒ α(G ) ≥ 3
8n.
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Relaxing planarity

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G F-free subcubic triangle-free ⇒ α(G ) ≥ 3
8n.

Conjecture (1995, Fraughnaugh and Locke)

G 2-connected subcubic triangle-free ⇒ α(G ) ≥ 3
8n −

1
4 .

Definition: a graph G (on at least three vertices) is called 2-connected if
G − v is connected for every vertex v .

Theorem (2019+, C., Goedgebeur and Joret)
Both conjectures are true :-)
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Graph class α ≥ Sharp due to

planar n
4 ∞ many

planar triangle-free n+1
3 ∞ many

subcubic triangle-free 5n
14 ∞ many (ess. two members of F)

connected subcubic triangle-free 11n−4
30 two members of F

planar subcubic triangle-free 3n
8 ∞ many

F-free subcubic triangle-free 3n
8

∞ many graphs that are
3-connected, girth 5,
non-planar and in fact with
arbitrarily large clique minors

2-connected subcubic triangle-free 3n−2
8 three members of F
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∞ many sharp examples

α = 6 = 3n
8 .

Use as a building block.
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∞ many sharp examples

3-connected, non-planar and α = 3n
8 .
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∞ many sharp examples

3-connected, girth 5, non-planar and α = 3n
8 .
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Motivation for the technical theorem

Theorem, C., Goedgebeur, Joret (2019+)

If G is F-free subcubic triangle-free, then α(G ) ≥ 3n
8 .

Enough to show the statement when

G connected, and

G critical, meaning α(G − e) > α(G ) ∀e ∈ E (G )
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A sparsity measure:

µ :=
9n3 + 10n2 + 11n1 + 12n0

24
=

6n − |E (G )|
12

where ni := number of vertices of degree i .

Remarks:

µ ≥ 3
8n ;⌈

3
8n −

1
12

⌉
≥ 3

8n because n ∈ Z.

Hence, to show α ≥ 3
8n it is enough to prove α ≥ µ− 1

12

Problem: there exist bad graphs with α = µ− 2
12 .
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Definition of bad graphs

is bad and

every 8-augmentation of a bad graph is bad:
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Attempt 2: Show that α ≥ µ− 1
12 , unless G is bad.

This is true, however . . .

Problem: to prove it, we need to consider a slightly stronger statement.
This involves dangerous graphs, some of which attain α = µ− 1

12 .
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Dangerous graphs

Technical recursive definition.

(C5 and the following are the smallest dangerous graphs)
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Main technical theorem (CvB-G-J ’19+)
Suppose

G F-free subcubic and triangle-free

G connected and critical, and

G not bad

then α ≥ µ− 1
12 .

If moreover

G has ≥ 3 degree-2 vertices and

G not dangerous and has no bad subgraph

then α ≥ µ .
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Generalization: allowing triangles

Define the refined measure

µ∗(G ) :=
6n − e − 2t

12
,

where e is the number of edges in G and t is the maximum number of
vertex-disjoint triangles.

Theorem (2019+, C, Goedgebeur and Joret)

Let G be a critical connected subcubic graph which is not isomorphic to
K4 or any member of F . Then

α(G ) = µ∗(G )− 2
12 if G is bad or almost bad

α(G ) ≥ µ∗(G )− 1
12 otherwise.
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Plan of the proof

G minimum counter-example

G almost 3-connected: If X is a 2-cutset then G − X has exactly two
components, with one isomorphic to K1 or K2

G has no bad subgraph

Deal with degree-2 vertices:

case where neighbors have both degree 2
case where neighbors have both degree 3
case where neighbors have degree 2 and 3

→ G is cubic and 3-connected

G has no 4-cycle

G has no 6-cycle

G has no dangerous subgraph (in particular, no 5-cycle)

Final argument: Local structure around a shortest even cycle
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Open problems

G F-free subcubic triangle-free

α(G ) ≥ 3n
8 is still best possible if we also forbid four-cycles.

What happens for even larger girth?

Fractional chromatic number χf (G ) at most 8
3 ?

(cp. conjecture Heckman and Thomas ’08)
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Thank you for your attention!
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An empty slide
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Open problems

Staton ’79 If G subcubic and triangle-free then n
α ≤

14
5

Recall: n
α ≤ χf

Dvǒrák, Sereni, Volec ’14 (conjectured by Heckman & Thomas ’01)

If G subcubic and triangle-free then χf ≤ 14
5

Could the upper bound on χf be improved if we further assume

G connected, or

G 2-connected, or

G planar, or

G has none of the 6 exceptional graphs as subgraph?
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Plan of the proof; how the graphs of F emerge.

G minimum counter-example

G almost 3-connected: If X is a 2-cutset then G − X has exactly two
components, with one isomorphic to K1 or K2.

G has no bad subgraph. ⇒ F11,F
(1)
19 ,F

(2)
19 .

Deal with degree-2 vertices:

case where neighbors have both degree 2.
case where neighbors have both degree 3 ⇒ red. to dangerous graphs.
case where neighbors have degree 2 and 3 ⇒ red. to 8-augmentation.

→ G is cubic and 3-connected ⇒ henceforward only need: α ≥ µ− 1
12 .

G has no 4-cycle

G has no 6-cycle ⇒ F
(1)
14 ,F

(2)
14 .

G has no dangerous subgraph (in particular, no 5-cycle) ⇒ F22.

Final argument: Local structure around a shortest even cycle
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Final argument (simplified):

Shortest even cycle 1, 2, . . . , 2k in G .
G ′ := G minus red vertices.

1 2 k

k+12k

... ...

... ... ...

α(G )− α(G ′) ≥ k

= 3k · 9

24
− k · 1

24
= µ(G )− µ(G ′).

Apply induction to α(G ′)−µ(G ′) for desired bound on α(G )−µ(G ).
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Definition dangerous graphs

C5 is dangerous

Join of two bad graphs is dangerous:

α = µ− 1
12 if G dangerous.
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