Large independent sets in triangle-free subcubic graphs: beyond planarity

Wouter Cames van Batenburg

Joint work with Jan Goedgebeur and Gwenaël Joret

Université Libre de Bruxelles

DIAMANT Symposium, November 2019

G graph on n vertices

Independence number: $\alpha(G) = \max\{k \mid \exists k \text{ pairwise nonadjacent vertices}\}\$

'Subcubic' = maximum degree at most 3

How large is $\frac{\alpha(G)}{n}$ in subcubic triangle-free graphs G?

Independence ratio.

In general, determining $\alpha(G)$ is *NP-hard*, even when restricting to planar subcubic triangle-free graphs.

Independence ratio.

In general, determining $\alpha(G)$ is *NP-hard*, even when restricting to planar subcubic triangle-free graphs.

 \Rightarrow

More feasible goal:

Given a (nice) graph class \mathcal{G} , find largest $c \in (0,1]$ such that for all $G \in \mathcal{G}$:

$$\frac{\alpha(G)}{n} \geq c.$$

Planar graphs

Theorem (four-colour theorem, 1976, Appel and Haken)

G planar $\Rightarrow G$ is 4-colourable.

Planar graphs

Theorem (four-colour theorem, 1976, Appel and Haken)

G planar \Rightarrow *G* is 4-colourable.

Corollary

$$G$$
 planar $\Rightarrow \alpha(G) \geq \frac{n}{4}$.

Every known proof uses the four-colour theorem!

Planar graphs

Theorem (four-colour theorem, 1976, Appel and Haken)

G planar \Rightarrow *G* is 4-colourable.

Corollary

G planar
$$\Rightarrow \alpha(G) \geq \frac{n}{4}$$
.

What if we also forbid triangles?

Triangle-free planar

Theorem (1959, Grötzsch)

G triangle-free planar \Rightarrow G is 3-colourable $\Rightarrow \alpha(G) \geq \frac{n}{3}$.

Triangle-free planar

Theorem (1959, Grötzsch)

G triangle-free planar \Rightarrow G is 3-colourable $\Rightarrow \alpha(G) \geq \frac{n}{3}$.

Theorem (1985, Jones)

G triangle-free planar $\Rightarrow \alpha(G) \geq \frac{n+1}{3}$.

Sharp for infinitely many graphs

Graph class	$\alpha \geq$	Due to
planar	<u>n</u>	4-colour theorem (1976)
planar triangle-free	<u>n+1</u>	Grötszch (1959), Jones (1985)

Graph class	$\alpha \geq$	Due to
planar	<u>n</u>	4-colour theorem (1976)
planar triangle-free	<u>n+1</u>	Grötszch (1959), Jones (1985)

Can we do better than $\frac{1}{3}$?

Graph class	$\alpha \geq$	Due to
planar	<u>n</u>	4-colour theorem (1976)
planar triangle-free	<u>n+1</u>	Grötszch (1959), Jones (1985)

Can we do better than $\frac{1}{3}$?

Yes, if we assume G is subcubic.

Subcubic triangle-free

Theorem (1979, Statton)

G subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{5}{14}n$.

Subcubic triangle-free

Theorem (1979, Statton)

G subcubic triangle-free
$$\Rightarrow \alpha(G) \geq \frac{5}{14}n$$
.

Only two tight examples among connected graphs [Heckman '08].

$$n = 14$$
 $\alpha = 5$

$$n=14$$
 $\alpha=5$

Subcubic triangle-free and connected

Theorem (1995, Fraughnaugh and Locke)

G connected subcubic triangle-free
$$\Rightarrow \alpha(G) \ge \frac{11}{30}n - \frac{4}{30}$$
.

The same two graphs are the only tight examples:

$$n = 14$$
 $\alpha = 5$

$$n=14$$
 $\alpha=5$

Subcubic triangle-free and connected

Theorem (1995, Fraughnaugh and Locke)

G connected subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{11}{30}n - \frac{4}{30}$.

Asymptotically tight; infinitely many graphs with $\alpha = \frac{11}{30}n - \frac{2}{15}$.

Graph class	$\alpha \geq$	Due to
planar	<u>n</u>	4-colour theorem (1976)
planar triangle-free	<u>n+1</u>	Grötszch (1959), Jones (1985)
subcubic triangle-free	<u>5<i>n</i></u> 14	Statton (1979)
connected subcubic triangle-free	$\frac{11n-4}{30}$	Fraughnaugh and Locke (1995)

Graph class	$\alpha \geq$	Due to
planar	<u>n</u> 4	4-colour theorem (1976)
planar triangle-free	$\frac{n+1}{3}$	Grötszch (1959), Jones (1985)
subcubic triangle-free	<u>5n</u> 14	Statton (1979)
connected subcubic triangle-free	$\frac{11n-4}{30}$	Fraughnaugh and Locke (1995)

Can we do better than $\frac{11}{30}$?

Graph class	$\alpha \geq$	Due to
planar	<u>n</u> 4	4-colour theorem (1976)
planar triangle-free	$\frac{n+1}{3}$	Grötszch (1959), Jones (1985)
subcubic triangle-free	<u>5n</u> 14	Statton (1979)
connected subcubic triangle-free	$\frac{11n-4}{30}$	Fraughnaugh and Locke (1995)

Can we do better than $\frac{11}{30}$?

Yes, if we additionally assume G is planar.

	1	I .
Graph class	$\alpha \geq$	Due to
planar	<u>n</u>	4-colour theorem (1976)
planar triangle-free	$\frac{n+1}{3}$	Grötszch (1959), Jones (1985)
subcubic triangle-free	<u>5<i>n</i></u> 14	Statton (1979)
connected subcubic triangle-free	$\frac{11n-4}{30}$	Fraughnaugh and Locke (1995)
planar subcubic triangle-free	3 <i>n</i> 8	Conjectured (1976) by Albertson, Bollóbas and Tucker, proved by Heckman and Thomas (2006)

Theorem (2006, Heckman and Thomas)

G planar subcubic triangle-free
$$\Rightarrow \alpha(G) \geq \frac{3}{8}n$$

Sharp for infinitely many bad graphs, e.g. :

$$\alpha = 3$$
, $n = 8$.

Graph class	$\alpha \geq$	Due to
planar	<u>n</u> 4	4-colour theorem (1976)
planar triangle-free	<u>n+1</u> 3	Grötszch (1959), Jones (1985)
subcubic triangle-free	<u>5n</u> 14	Statton (1979)
connected subcubic triangle-free	$\frac{11n-4}{30}$	Fraughnaugh and Locke (1995)
planar subcubic triangle-free	3 <i>n</i> 8	Heckman and Thomas (2006)

Graph class	$\alpha \geq$	Due to
planar	<u>n</u> 4	4-colour theorem (1976)
planar triangle-free	$\frac{n+1}{3}$	Grötszch (1959), Jones (1985)
subcubic triangle-free	<u>5n</u> 14	Statton (1979)
connected subcubic triangle-free	$\frac{11n-4}{30}$	Fraughnaugh and Locke (1995)
planar subcubic triangle-free	3 <i>n</i> 8	Heckman and Thomas (2006)

Question: can we relax the planarity condition?

Graph class	$\alpha \geq$	Due to
planar	<u>n</u> 4	4-colour theorem (1976)
planar triangle-free	$\frac{n+1}{3}$	Grötszch (1959), Jones (1985)
subcubic triangle-free	<u>5n</u> 14	Statton (1979)
connected subcubic triangle-free	$\frac{11n-4}{30}$	Fraughnaugh and Locke (1995)
planar subcubic triangle-free	3 <i>n</i> 8	Heckman and Thomas (2006)

Question: can we relax the planarity condition?

Old conjecture: suffices to forbid six non-planar subgraphs

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G F-free subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{3}{8}n$.

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G F-free subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{3}{8}n$.

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G \mathcal{F} -free subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{3}{8}n$.

Conjecture (1995, Fraughnaugh and Locke)

G 2-connected subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{3}{8}n - \frac{1}{4}$.

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G \mathcal{F} -free subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{3}{8}n$.

Conjecture (1995, Fraughnaugh and Locke)

G 2-connected subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{3}{8}n - \frac{1}{4}$.

Definition: a graph G (on at least three vertices) is called 2-connected if G - v is connected for every vertex v.

Conjecture (1995, Fraughnaugh and Locke + Bajnok and Brinkmann)

G \mathcal{F} -free subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{3}{8}n$.

Conjecture (1995, Fraughnaugh and Locke)

G 2-connected subcubic triangle-free $\Rightarrow \alpha(G) \geq \frac{3}{8}n - \frac{1}{4}$.

Theorem (2019+, C., Goedgebeur and Joret) Both conjectures are true :-)

Graph class	$\alpha \geq$	Due to
planar	<u>n</u>	4-colour theorem (1976)
planar triangle-free	$\frac{n+1}{3}$	Grötszch (1959), Jones (1985)
subcubic triangle-free	<u>5n</u> 14	Statton (1979)
connected subcubic triangle-free	$\frac{11n-4}{30}$	Fraughnaugh and Locke (1995)
planar subcubic triangle-free	3 <i>n</i> 8	Heckman and Thomas (2006)
${\cal F}$ -free subcubic triangle-free	3 <i>n</i> 8	C, Goedgebeur, Joret (2019+)
2-connected subcubic triangle-free	$\frac{3n-2}{8}$	C, Goedgebeur, Joret (2019+)

Graph class	$\alpha \geq$	Due to
planar	<u>n</u>	4-colour theorem (1976)
planar triangle-free	<u>n+1</u>	Grötszch (1959), Jones (1985)
subcubic triangle-free	<u>5n</u> 14	Statton (1979)
connected subcubic triangle-free	$\frac{11n-4}{30}$	Fraughnaugh and Locke (1995)
planar subcubic triangle-free	3 <i>n</i> 8	Heckman and Thomas (2006)
${\cal F}$ -free subcubic triangle-free	3 <i>n</i> 8	C, Goedgebeur, Joret (2019+)
2-connected subcubic triangle-free	<u>3<i>n</i>−2</u>	C, Goedgebeur, Joret (2019+)

Our technical theorem generalizes all of the above results concerning subcubic graphs

Graph class	$\alpha \geq$	Sharp due to
planar	<u>n</u>	∞ many
planar triangle-free	$\frac{n+1}{3}$	∞ many
subcubic triangle-free	<u>5n</u> 14	∞ many (ess. two members of ${\cal F}$)
connected subcubic triangle-free	$\frac{11n-4}{30}$	two members of ${\cal F}$
planar subcubic triangle-free	3 <i>n</i> 8	∞ many
${\mathcal F}$ -free subcubic triangle-free	3 <u>n</u> 8	∞ many graphs that are 3-connected, girth 5, non-planar and in fact with arbitrarily large clique minors
2-connected subcubic triangle-free	<u>3<i>n</i>−2</u>	three members of ${\mathcal F}$

∞ many sharp examples

$$\alpha = 6 = \frac{3n}{8}$$
.

Use as a building block.

∞ many sharp examples

3-connected, non-planar and $\alpha = \frac{3n}{8}$.

∞ many sharp examples

3-connected, non-planar and $\alpha = \frac{3n}{8}$.

∞ many sharp examples

3-connected, girth 5, non-planar and $\alpha = \frac{3n}{8}$.

Motivation for the technical theorem

Theorem, C., Goedgebeur, Joret (2019+)

If G is \mathcal{F} -free subcubic triangle-free, then $\alpha(G) \geq \frac{3n}{8}$.

Enough to show the statement when

- G connected, and
- G critical, meaning $\alpha(G e) > \alpha(G) \quad \forall e \in E(G)$

A sparsity measure:

$$\mu := \frac{9n_3 + 10n_2 + 11n_1 + 12n_0}{24} = \frac{6n - |E(G)|}{12}$$

where $n_i :=$ number of vertices of degree i.

Remarks:

$$\mu \geq \frac{3}{8}n$$
 ;

$$\left\lceil \frac{3}{8}n - \frac{1}{12} \right\rceil \ge \frac{3}{8}n$$
 because $n \in \mathbb{Z}$.

A sparsity measure:

$$\mu := \frac{9n_3 + 10n_2 + 11n_1 + 12n_0}{24} = \frac{6n - |E(G)|}{12}$$

where $n_i :=$ number of vertices of degree i.

Remarks:

$$\mu \geq \frac{3}{8}n$$
 ;

$$\left\lceil \frac{3}{8}n - \frac{1}{12} \right\rceil \geq \frac{3}{8}n$$
 because $n \in \mathbb{Z}$.

Hence, to show $\alpha \geq \frac{3}{8}n$ it is enough to prove $\alpha \geq \mu - \frac{1}{12}$

$$\alpha \ge \mu - \frac{1}{12}$$

A sparsity measure:

$$\mu := \frac{9n_3 + 10n_2 + 11n_1 + 12n_0}{24} = \frac{6n - |E(G)|}{12}$$

where $n_i :=$ number of vertices of degree i.

Remarks:

$$\mu \geq \frac{3}{8}n$$
 ;

$$\left\lceil \frac{3}{8}n - \frac{1}{12} \right\rceil \geq \frac{3}{8}n$$
 because $n \in \mathbb{Z}$.

Hence, to show $\alpha \geq \frac{3}{8}n$ it is enough to prove $\alpha \geq \mu - \frac{1}{12}$

$$\alpha \ge \mu - \frac{1}{12}$$

Problem: there exist bad graphs with $\alpha = \mu - \frac{2}{12}$.

Definition of bad graphs

is bad and

every 8-augmentation of a bad graph is bad:

Attempt 2: Show that $\alpha \ge \mu - \frac{1}{12}$, unless *G* is bad.

This is true, however . . .

Problem: to prove it, we need to consider a slightly stronger statement. This involves dangerous graphs, some of which attain $\alpha = \mu - \frac{1}{12}$.

Dangerous graphs

Technical recursive definition.

(C₅ and the following are the smallest dangerous graphs)

Main technical theorem (CvB-G-J '19+) Suppose

- *G F*-free subcubic and triangle-free
- G connected and critical, and
- G not bad

then
$$\alpha \geq \mu - \frac{1}{12}$$
 .

Main technical theorem (CvB-G-J '19+) Suppose

- *G F*-free subcubic and triangle-free
- G connected and critical, and
- G not bad

then
$$\alpha \geq \mu - \frac{1}{12}$$
 .

If moreover

- G has ≥ 3 degree-2 vertices and
- G not dangerous and has no bad subgraph

then
$$\alpha \geq \mu$$
 .

Generalization: allowing triangles

Define the refined measure

$$\mu^*(G) := \frac{6n - e - 2t}{12},$$

where e is the number of edges in G and t is the maximum number of vertex-disjoint triangles.

Theorem (2019+, C, Goedgebeur and Joret)

Let G be a critical connected subcubic graph which is not isomorphic to K_4 or any member of \mathcal{F} . Then

- $\alpha(G) = \mu^*(G) \frac{2}{12}$ if G is bad or almost bad
- $\alpha(G) \ge \mu^*(G) \frac{1}{12}$ otherwise.

Plan of the proof

G minimum counter-example

- G almost 3-connected: If X is a 2-cutset then G-X has exactly two components, with one isomorphic to K_1 or K_2
- G has no bad subgraph
- Deal with degree-2 vertices:
 - case where neighbors have both degree 2
 - case where neighbors have both degree 3
 - case where neighbors have degree 2 and 3
- \rightarrow G is cubic and 3-connected
 - G has no 4-cycle
 - G has no 6-cycle
 - G has no dangerous subgraph (in particular, no 5-cycle)

Final argument: Local structure around a shortest even cycle

Open problems

G \mathcal{F} -free subcubic triangle-free

- $\alpha(G) \ge \frac{3n}{8}$ is still best possible if we also forbid four-cycles. What happens for even larger girth?
- Fractional chromatic number $\chi_f(G)$ at most $\frac{8}{3}$? (cp. conjecture Heckman and Thomas '08)

Thank you for your attention!

An empty slide

Open problems

Staton '79 If *G* subcubic and triangle-free then $\frac{n}{\alpha} \leq \frac{14}{5}$

Recall:
$$\frac{n}{\alpha} \le \chi_f$$

Dvořák, Sereni, Volec '14 (conjectured by Heckman & Thomas '01) If G subcubic and triangle-free then $\chi_f \leq \frac{14}{5}$

Could the upper bound on χ_f be improved if we further assume

- G connected, or
- G 2-connected, or
- G planar, or
- G has none of the 6 exceptional graphs as subgraph?

Plan of the proof; how the graphs of \mathcal{F} emerge.

G minimum counter-example

- G almost 3-connected: If X is a 2-cutset then G-X has exactly two components, with one isomorphic to K_1 or K_2 .
- G has no bad subgraph. $\Rightarrow F_{11}, F_{19}^{(1)}, F_{19}^{(2)}$.
- Deal with degree-2 vertices:
 - case where neighbors have both degree 2.
 - case where neighbors have both degree $3 \Rightarrow \text{red}$. to dangerous graphs.
 - case where neighbors have degree 2 and 3 \Rightarrow red. to 8-augmentation.
- \rightarrow G is cubic and 3-connected \Rightarrow henceforward only need: $\alpha \ge \mu \frac{1}{12}$.
 - G has no 4-cycle
 - G has no 6-cycle $\Rightarrow F_{14}^{(1)}, F_{14}^{(2)}$.
 - G has no dangerous subgraph (in particular, no 5-cycle) $\Rightarrow F_{22}$.

Final argument: Local structure around a shortest even cycle

Final argument (simplified):

Shortest even cycle $1, 2, \ldots, 2k$ in G.

G' := G minus red vertices.

Final argument (simplified):

Shortest even cycle $1, 2, \ldots, 2k$ in G.

G' := G minus red vertices.

$$\alpha(G) - \alpha(G') \ge k$$

= $3k \cdot \frac{9}{24} - k \cdot \frac{1}{24} = \mu(G) - \mu(G')$.

Final argument (simplified):

Shortest even cycle $1, 2, \ldots, 2k$ in G.

G' := G minus red vertices.

$$\alpha(G) - \alpha(G') \geq k$$

$$= 3k \cdot \frac{9}{24} - k \cdot \frac{1}{24} = \mu(G) - \mu(G').$$

Apply induction to $\alpha(G') - \mu(G')$ for desired bound on $\alpha(G) - \mu(G)$.

Definition dangerous graphs

C₅ is dangerous

Join of two bad graphs is dangerous:

$$\alpha = \mu - \frac{1}{12}$$
 if G dangerous.