
 

 

 
Cliques, colours and clusters

Cames van Batenburg, W.P.S.

2018, Dissertation 

 

 

 

 

 

 

 
Version of the following full text: Publisher’s version

Downloaded from: https://hdl.handle.net/2066/191382

Download date: 2026-01-20

 

 

 

 

 

 

 

 

 

 
Note:

To cite this publication please use the final published version (if applicable).

https://www.ru.nl/en/staff/researchers/publishing-research/publishing-and-archiving-in-the-radboud-repository
https://hdl.handle.net/2066/191382


Cliques, colours and clusters

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen op woensdag 27 juni 2018
om 14:30 uur precies

door

Wouter Pieter Sebastiaan Cames van Batenburg

geboren op 10 december 1988
te Den Haag



Promotor:
prof. dr. E. Cator

Copromotor:
dr. R.J. Kang

Manuscriptcommissie:
prof. dr. F. Verbunt (voorzitter)
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Chapter 1

Introduction

In this thesis, we discuss problems concerning extremal graph theory, colouring of
graphs and percolation theory.

Each chapter is based on a paper and as such can be read independently. A common
feature among these papers is that we investigate the size and properties of objects that
are in some sense highly connected (cliques of a graph, connected clusters in a random
percolating subgraph) or not connected at all (stable sets of a graph, each of which we
want to assign a colour). Hence the title of this thesis: cliques, colours, clusters.

In this introduction we provide general background and then highlight some aspects
of each chapter. We mostly focus on the chromatic number of graphs. Please note the
dividers placed carefully throughout this introduction, marking the transition to a new
subject. For a more complete image of the obtained results, we refer the reader to the
abstract and introduction at the start of each chapter.

Clique, stable set, chromatic number
Let G be a (simple, loopless) graph with vertices V (G) and edges E(G). In this thesis,
we are often interested in the chromatic number χ(G) of a graph G. By definition,
χ(G) is the least number of colours one needs to colour the vertices of V (G), such that
every two adjacent vertices have different colours. A vertex-colouring that respects this
rule is called a proper colouring.

To better understand the chromatic number, it is convenient to introduce cliques
and stable sets. A clique of G is a subset C ⊆ V (G) such that there is an edge between
any two vertices of C. The clique number ω(G) of G is the size of a largest clique in G.
If all n vertices of a graph form a clique then we call the graph complete and we denote
it by Kn. On the other hand, a stable set of G is a subset S ⊆ V (G) such that there
is no edge between any pair of vertices in S. The stability number α(G) of a graph G
is the size of the largest stable set in G.

Since all vertices in a stable set can be assigned the same colour, χ(G) can alter-
natively be defined as the least number of stable sets that partition V (G). From this
alternative definition, it immediately follows that χ(G) ≥ |V (G)|/α(G).

It is an important and natural task to find optimal upper bounds on the chromatic
number for basic classes of graphs. A famous example is the Four Colour Theorem [53,

1



2 CHAPTER 1. INTRODUCTION

54, 93] for planar graphs. A planar graph is a graph that can be embedded in the plane
such that its edges only intersect at their endpoints. In the language of graphs, the
Four Colour Theorem states that any planar graph has chromatic number at most 4.
A popular interpretation is that for any hypothetical world map, at most four colours
are required to colour the countries of the map so that no two bordering countries have
the same colour. This fact has the following crude application in wireless networks
with a planar geometry. To avoid interference between neighbouring transmitters, it is
desirable to have them transmit their signals in different frequency ranges. According
to the Four Colour Theorem, only four different frequency ranges are required to avoid
interference, thus enabling efficient use of bandwidth. Other applications of chromatic
graph theory are in optimally allocating or scheduling tasks. One can construct a
graph such that each task is represented by a vertex and any two conflicting tasks
(that cannot be executed at the same time or allocated to the same location because
e.g. they require the same resource) are connected by an edge. An optimal colouring
then yields an allocation that minimizes the total required time or space.

In practice, one would often need more specialized variants of the concept of chro-
matic number. Approximations that almost always work rather than exact results
would be deemed sufficient and the focus would be on algorithms rather than on ex-
istence results. Although our results have some bearing on such aspects, instead our
immediate interest lies in more theoretical questions: existence and (close to) sharp
bounds for worst cases.

Upper bounds for chromatic number
Determining whether a given graph is k−colourable is computationally hard (NP-
complete) for any k ≥ 3 and despite many decades of research, there are not many
general purpose techniques available to find good upper bounds. We will now discuss
a few of such techniques.

Let us first have a look at ‘greedy’ colouring. Let ∆(G) = maxv∈V (G) deg(v) denote
the maximum degree of G. Then it holds that χ(G) ≤ ∆(G) + 1. Indeed, take a vertex
v ∈ V (G) and remove it from G. By induction we may assume that G−v is (∆(G)+1)-
colourable. Since v has at most ∆(G) neighbours, we can colour v with a colour not
appearing among its neighbours, thus obtaining a proper (∆(G) + 1)−colouring of G.
This greedy procedure can be refined with the concept of degeneracy. A graph G is
called k−degenerate if every induced subgraph of G has a vertex of degree k or less.
The degeneracy δ∗(G) of G is the least k such that G is k-degenerate. Exactly the same
induction argument then yields that χ(G) ≤ δ∗(G) + 1. In this spirit, if one wants to
show that χ(G) ≤ b + 1 for all graphs G in some graph class that is invariant under
vertex deletion, one can consider a vertex-minimal counterexample G and (using the
special properties of the class) derive the existence of a vertex of degree b in G, leading
to a (b+1)−colouring of G and thus a contradiction. This type of reasoning is referred
to as a degeneracy argument.

In some lucky cases where the structure of the graph is known in detail, it is
possible to describe a nice partition of the vertices V (G) =

⋃
i Vi such that the induced

subgraphs G[Vi] have small chromatic number. In that case one colours each of these
graphs with their own colour palette, yielding χ(G) ≤ ∑i χ(G[Vi]). For an example,
one could try to partition G into a small number of vertex sets that induce planar
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graphs and then repeatedly apply the four colour theorem.
A technique that is especially effective for planar graphs is the discharging method.

Every plane graph (which is an embedding of a planar graph in the plane) satisfies
Euler’s formula e− v− f = −2, where e, v and f are the number of edges, vertices and
faces of the graph respectively. Suppose one wants to prove that a certain subclass
of planar graphs satisfies a statement P . For a contradiction one then assumes the
class contains a counterexample G to P . Next, certain suitable charges (elements of
R) are assigned to the vertices, edges and faces of G, chosen in such a way that the
sum of the charges equals e − v − f and thus is negative. Then, using that P is false
for G, one proves that it is possible to (locally) redistribute the charges in such a way
that ultimately all charges are nonnegative, while also preserving the (negative) sum
of the charges; contradiction. To prove the main result in chapter 5 we combine, in
particular, a degeneracy argument and the discharging method.

All of the above methods predominantly rely on local properties and modifications
of the graph. However, sometimes the chromatic number is determined by the global
structure of the graph1. In such a situation random colouring techniques may form the
best option of attack. A nice example is a recent new proof by Molloy [85] of a result
of Johansson [64], stating that the chromatic numer of triangle-free graphs is upper
bounded by O (∆(G)/ ln(∆(G))). Johansson used an iterative scheme to randomly
colour subsets of the uncoloured vertices, using concentration bounds in each step to
ensure that no two adjacent vertices receive the same colour, with sufficiently high
probability. In his new proof, Molloy takes a partial proper colouring uniformly at ran-
dom among all partial proper colourings 2 that use at most (1 + o(1))∆(G)/ ln(∆(G))
colours. Here ‘partial’ means that not all vertices need to have a colour assigned to
them. Those uncoloured vertices are called blank. Subsequently he shows that with
nonzero probability the neighbourhood of each blank vertex has been coloured in such
a way that the blank vertices can be coloured greedily, with a degeneracy argument.
One of the nice aspects of the proof is that the uniformly random partial colouring
captures global structure of the graph, yet this random colouring only has to be ana-
lyzed locally, thus making the analysis feasible.

Lower bounds for the chromatic number
Having discussed techniques for obtaining upper bounds, let us now have a look at lower
bounds. Typically one is not interested in a single graph but in a whole class of graphs
G and the largest possible chromatic number occuring in that class, maxG∈G χ(G). In
that case we only need to find one graph in G which has large chromatic number. Two
examples for G are the class of planar graphs (K4 is planar and has chromatic number 4,
meeting the bound of the four colour theorem) or the class of H−free graphs (graphs
not containing the graph H as a subgraph) of maximum degree ∆. As mentioned
before, all graphs G satisfy χ(G) ≥ |V (G)|/α(G). Therefore, given a class G, it can
be fruitful to search G for a graph of small stability number. For this, the probabilistic
method often works: one takes a random graph from G (according to some convenient

1To see that a colouring problem can be of a non-local nature, consider the following result of
Erdős [38]. For all k there exists ε > 0 so that for all sufficiently large n there exist graphs G on n
vertices with χ(G) > k and yet χ(G[S]) ≤ 3 for every set S of vertices of size at most εn.

2Actually a partial proper list colouring is used. Given lists (L(v))v∈V (G) of colours, a L−list
colouring is a proper colouring such that every v ∈ V (G) receives a colour from its list L(v).
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probability distribution) and computes an A > 0 (depending on parameters relevant to
the class, like the maximum degree or the number of vertices) such that the expected
value E( number of stable sets of size > A ) is strictly less than 1. It then follows that
G contains at least one graph G without stable sets of size > A, implying that α(G) ≤ A
and so χ(G) ≥ |V (G)|/A. This method is often effective because computing expected
values is straightforward, even in probability distributions with many dependencies.

Since every two vertices of a clique need to have different colours, ω(G) is another
straightforward lower bound for the chromatic number. In general however, the ratio
of χ(G) and ω(G) can be arbitrarily large. For example, there exist triangle-free graphs
(graphs that do not contain K3 as a subgraph and thus have clique number at most 2)
with arbitrarily large chromatic number. Indeed, there exist explicit constructions of
such triangle-free graphs, using the so-called Mycielskian [84]. Alternatively, one can
also consider the Erdős-Renyi graph, which is a random graph on n vertices where each
edge independently is chosen to be in the graph with a uniform probability p ∈ [0, 1].
For an appropriate value of p = p(n), one can show that after removing a vertex from
each triangle of the Erdős-Renyi graph, there is a positive probability that the chro-
matic number of the resulting random triangle-free graph is at least f(n), where f(n)
is some function tending to infinity as n tends to infinity.

Chi-boundedness
Although the chromatic number cannot be upper bounded by the clique number in
general, one may wonder whether it sometimes carries sufficient information for a
coarser upper bound. A class of graphs G is called χ−bounded if there exists a bind-
ing function f : N → N such that for all G ∈ G and all induced subgraphs H of G,
χ(H) ≤ f(ω(H)). Bipartite and planar graphs and graphs of bounded degeneracy
are examples of χ−bounded classes. As we have observed, the class of triangle-free
graphs is not χ−bounded. For a non-trivial example of a class that is χ−bounded,
consider the class of graphs that do not contain any cycle of odd size ≥ 5 as an induced
subgraph [96]. Perfect graphs have been one of the inspirations for the concept of
χ−boundedness. Perfect graphs are graphs for which the chromatic number of every
induced subgraph equals the clique number of that subgraph. Thus they have the
identity as binding function. The perfect graphs were defined by Claude Berge in the
1960s. They are important objects for graph theory, linear programming and combina-
torial optimization. As conjectured by Berge and proved by Lovász, the complement
of every perfect graphs is also perfect and this is known as the (weak) perfect graph
theorem [11]. Berge also observed that a perfect graph cannot have any odd cycle of
size ≥ 5 as induced subgraph (since such cycles have clique number 2 and chromatic
number 3), nor can the complement of a perfect graph. Thereupon he conjectured that
this property exactly characterizes perfect graphs. This long sought-after important
result, known as the strong perfect graph theorem, was finally proved in the 2000s by
Chudnovsky, Robertson, Seymour and Thomas [26]. Since its forbidden graph char-
acterization is invariant under taking complements, the strong perfect graph theorem
directly implies the weak perfect graph theorem.

Reed’s conjecture and fractional chromatic number
We have seen that ∆(G) + 1 and ω(G) are straightforward upper respectively lower
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bounds for χ(G). Reed conjectured [91] that the chromatic number is in fact at most

the average of the two, rounded upwards: χ(G) ≤
⌈
ω(G)+∆(G)+1

2

⌉
. This conjecture has

been confirmed for several graph classes, among which are the claw-free graphs (we will
discuss these graphs later) [72]. In general even the case ω(G) = 2 is open, though only
for small values of ∆(G) since triangle-free graphs satisfy χ(G) = O (∆(G)/ log(∆(G))).

The fractional chromatic number χf (G) of a graph G is a relaxation of the chro-
matic number. There are multiple equivalent definitions, one of which is the following:
χF (G) ≤ k iff there exists an integer N and a collection of k · N stable sets of G
such that each vertex is contained in exactly N stable sets. Note that this reduces
to the definition of χ(G) if we additionally demand that N = 1. It readily follows
that ω(G) ≤ χf (G) ≤ χ(G). Furthermore, it can be shown that χf (G) is a rational
number for all graphs G, so the fractional chromatic number is truly fractional. For
more details on fractional colouring we refer the reader to [95].

Molloy and Reed [87] have proved a fractional analogue of Reed’s conjecture. They

showed that χf (G) ≤ ω(G)+∆(G)+1
2 for every graph G. McDiarmid obtained a local re-

finement (cf [70]): χf (G) ≤ maxv∈V (G)

(
deg(v)+ω(v)+1

2

)
, where ω(v) denotes the size of

the largest clique containing v. Although we do not directly study fractional colourings
or Reed’s conjecture in this thesis, they did serve as an inspiration in the background,
providing hints on what bounds to expect in e.g. chapter 4.

Beyond clique number. Hadwiger number, immersion number.
We have seen that the clique number, being a very local property, is not always sufficient
to describe an upper bound for the chromatic number. There are however clique-like
structures of a more global nature that do yield such an upper bound. A graph H is
a minor of another graph G if it can be obtained from G by contracting some edges,
deleting some edges and deleting some vertices. Several important graph classes can
be characterized by a (finite) set of forbidden minors. For example, the planar graphs
are exactly those graphs without K5 or the complete bipartite graph K3,3 as a mi-
nor. This is known as Wagner’s Theorem. Hadwiger [51] conjectured that for any
graph G the chromatic number χ(G) is at most the size of the largest clique that is a
minor of G. This conjectured upper bound is called the Hadwiger number of G and
denoted by h(G). The conjecture is only proven to hold for h(G) ≤ 5. Note that by
Wagner’s Theorem, the four colour theorem is a special case of Hadwiger’s conjecture.
Regardless of the validity of Hadwiger’s conjecture, we know for sure that χ(G) can be
upper bounded by a function of h(G): Kostochka [74] has shown that every graph G
is O(h(G)

√
log(h(G)))−degenerate, so that χ(G) = O(h(G)

√
log(h(G))).

Another clique number-like global parameter is the immersion number i(G) of G. It
is the size of the largest clique that is an immersion of G, meaning that there is an
injective function from the vertices of the clique to V (G) such that the images of the
vertices are connected in G by edge-disjoint paths. In spirit of Hadwiger’s conjec-
ture it is believed that χ(G) ≤ i(G) for all graphs [81, 1]. The best known result is
χ(G) < 3.54 · i(G) + 4 [49]. Also, using a minimal counterexample approach the author

of this thesis has derived that χ(G) ≤
⌈
i(G)+∆(G)

2

⌉
for all graphs G (see the appendix).

Note that this demonstrates a weak variant of Reed’s conjecture.
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Turán numbers
Several times in this thesis, in chapters 2 and 4 and in some sense also in chapter 3,
we investigate a problem under the additional condition that the graphs under con-
sideration do not contain a certain graph H as a subgraph. For H we usually take
Pk (a path of order k), Ck (a cycle of order k) or K2,k (the complete bipartite graph
on parts of sizes 2 and k). To get a rough idea of the effect of such exclusions on the
structure of a graph we here briefly discuss Turán numbers. Given a graph H and
an integer n, the Turán number ex(H,n) denotes the maximum possible number of
edges in a graph on n vertices that does not have H as a subgraph. Thus the smaller
the Turán number, the sparser the graphs must be. For comparison, note that every
graph on n vertices has at most

(
n
2

)
≈ n2/2 edges. It turns out that excluding odd

cycles does not have a large effect, since bipartite graphs do not contain any odd cycles
and yet Kbn/2c,dn/2e has bn2/4c edges. Excluding K2,k, an even cycle or a path has a
progressively larger effect. For integers k, the following bounds are sharp or close to
sharp: ex(C2k+1, n) = bn2/4c for n sufficiently large, ex(K2,k, n) = 1

2

√
kn3/2+O(n4/3),

ex(C2k, n) ≤ (k−1)n1+1/k+16(k−1)n and ex(Pk, n) = k−2
2 n. In particular: the longer

the excluded even cycle, the sparser the graph must be. For general non-bipartite H,
there exists a good approximation in terms of the chromatic number of H; the classic
Erdős-Stone Theorem yields ex(H,n) ≤ ex(Kχ(H), n)+o(n2) = (1− 1

χ(H)−1 +o(1))·
(
n
2

)
.

Even though Turán numbers go all the way back to the early days of extremal graph
theory and combinatorics, many problems in this area remain open (cf. e.g.[48]).

Line graph, multigraph, claw-free graph
A proper colouring as discussed up to now only requires that adjacent vertices are
coloured differently, but one may desire more strict conditions. We will now discuss a
range of graph classes that arise from imposing a different (e.g. distance) requirement
on equicoloured parts of the graph.

Let us first consider a colouring of the edges such that incident edges are coloured
differently. This problem can be described in terms of the chromatic number of line
graphs. By definition, the line graph L(G) of a graph G has vertices given by the edges
of G and, furthermore, two vertices in L(G) are adjacent iff the corresponding edges
in G are incident. The chromatic number of the line graph χ(L(G)) is known as the
chromatic index of G. Note that it equals the minimum number of colours one needs
to colour the edges of G such that no two incident edges have the same colour. It also
equals the minimum number of matchings that partition the edges of G.

Since the edges incident to a vertex of degree ∆(G) need to have pairwise different
colours we have χ(L(G)) ≥ ∆(G). On the other hand, since each edge is incident to
at most 2∆(G) − 2 other edges, a naive upper bound is χ(L(G)) ≤ ∆(L(G)) + 1 ≤
2∆(G)−1, leaving quite some range for the actual value. However, according to a classic
theorem of Vizing [102], the upper bound can be improved considerably and in fact the
chromatic index is limited to only two possible values: χ(L(G)) ∈ {∆(G),∆(G) + 1}.
Having χ−boundedness in the back of our mind, it is worth noting here that ω(L(G)) =
∆(G) (provided ∆(G) > 2). For some natural classes it is possible to determine the
chromatic index exactly. For example, due to König’s Line Colouring Theorem [73],
every bipartite graph G has chromatic index exactly ∆(G).

Vizing’s theorem can be generalized to multigraphs. A multigraph is a graph which



7

is permitted to have multiple edges between two fixed vertices. The number of such
edges connecting a vertex pair is the multiplicity of that vertex pair, and the maximum
over all vertex pairs is called the multiplicity µ(G) of the graph G. Vizing’s theorem for
multigraphs states that χ(L(G) ≤ ∆(G) + µ(G). From this, one can derive Shannon’s
Theorem [98]: all multigraphs G satisfy χ(L(G)) ≤ 3

2∆(G). This bound is sharp
because it is attained by three vertices with ∆(G)/2 edges between each pair of vertices.

Note that each colour class of an edge-colouring of a multigraph H is a matching
and therefore contains at most b|V (H)|/2c edges. Therefore all multigraphs G satisfy

χ(L(G)) ≥ D(G), where D(G) := max H⊆Gs.t.
|V (H)|≥2

⌈
|E(H)|
b|V (H)|/2c

⌉
is the density of G. One of

the major open problems for multigraph edge colouring is the Goldberg-Seymour con-
jecture. It asks whether every multigraph satisfies χ(L(G)) ≤ max(∆(G) + 1, D(G)).
Due to a classic theorem of Edmonds [36], this would imply that χf (L(G)) ≤ χ(L(G)) ≤
χf (L(G)) + 1 for every multigraph (cf e.g. [34]).

There are two alternative characterizations of line graphs. First, a graph is the line
graph of a (multi)graph if its edges can be partitioned into maximal cliques so that
no vertex belongs to more than two such cliques. If moreover no two vertices are both
in the same two cliques then it is the line graph of a simple graph.[83] We use this
characterization in chapter 3. Second, line graphs of graphs are also characterized by
nine forbidden induced subgraphs [8]. More precisely, a graph is the line graph of a
simple graph iff it does not contain any of those nine graphs as an induced subgraph.
The smallest and simplest of these nine forbidden graphs is the claw, which is the
graph K1,3, a vertex with three mutually nonadjacent neighbours. Thus the claw-free
graphs form a well-studied generalization of line graphs. The chromatic number of a
claw-free graph G is upper bounded by ω(G)2 and this cannot be improved to a linear
function in ω(G). However, if additionally the graph contains at least one stable set
of size 3 then the chromatic number is at most 2ω(G) [28]. Recall furthermore that
Reed’s conjecture has been confirmed for claw-free graphs [72]. In chapter 3 we study a
problem on claw-free graphs and deduce that it in fact reduces to the case of line graphs.

∞

From now on, we gradually shift focus from general background to the new contri-
butions that are presented in this thesis. Please note the ∞−symbols, which mark the
transition to a new subject. We first discuss the contents of chapter 5 on the chromatic
number of the intersection graphs of several families of Jordan curves and Jordan re-
gions, then chapters 3 and 4 on two approaches to the Erdős-Nešetřil conjecture on
strong edge colouring, then chapter 2 on graph packing and the Bollobás-Eldridge-
Catlin conjecture and finally chapter 6 on the dimension of the Incipient Infinite Clus-
ter, a problem from percolation theory.

∞
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Intersection graphs of Jordan regions and Jordan curves
Intersection graphs form another direction in which line graphs can be generalized.
Given a family of subsets F := (Fi)i of some base set, the intersection graph G(F) of
F is the graph with a vertex vi for each Fi and an edge vivj iff Fi∩Fj 6= Ø. Well-studied
examples include interval graphs (the intersection graph of a collection of intervals in
R) and intersection graphs of convex subsets of R2. Any finite graph G can be embed-
ded in R3 such that the images of the edges are straight line segments that may only
intersect in their endpoints. Now taking the embeddings of the edges as our family of
subsets F , we see that the line graph of G is precisely the intersection graph of F . In
chapter 5 we investigate the chromatic number of the intersection graph of certain fam-
ilies of Jordan regions and Jordan curves in the plane, and we obtain bounds in terms
of the clique number. In particular, we investigate the intersection graph of a family
of Jordan regions in the plane that pairwise intersect in at most one point. Using the
discharging method, a degeneracy argument and list colouring, we show that the class
of these graphs is χ−bounded with binding function f(x) = x+ 327. Furthermore, for
this family we derive the stronger and sharp bound χ(G(F)) ≤ ω(G(F)) + 1 under the
additional condition that ω(G(F)) ≥ 490. Since the binding function is of the form
x + C for some constant C, it follows from a recent theorem of Scott and Seymour
(solving a conjecture of Gyárfás) that the class of complements of these intersection
graphs is also χ-bounded [97]. Another result of ours (Corollary 5.1.11) implies that
the intersection graph G(F) of any family F of non-crossing Jordan curves in the plane
is (15.95 · ω(G(F))−colourable, and we provide ideas how the constant 15.95 may be
improved. We do so in terms of a certain distance, where the distance between two
Jordan curves roughly corresponds to the number of other Jordan curves separating
them. The smaller the average distance between the Jordan curves in the family, the
smaller the chromatic number of the intersection graph.

∞

Square of a graph
We will now discuss a type of colouring where equicoloured vertices need to be even
further apart. The distance between two vertices u, v ∈ V (G) is the minimum number
t such that G contains a path between u and v on t edges3. The square G2 of a graph
G is the graph obtained from G by adding an edge between any two vertices that are
at distance 2 in G. The chromatic number of G2 reflects an efficient partition of the
vertices in ‘very stable’ sets. The vertices of such a very stable set are mutually at
distance at least three in G. As to the chromatic number, an easy upper bound is
χ(G2) ≤ ∆(G2) + 1 ≤ ∆2 + 1. It turns out that this is actually sharp up to a (1 +o(1))
factor (as ∆→∞) and there even exist point-line incidence graphs of girth 6 (graphs
for which the shortest cycle has length 6) that asymptotically attain this bound. Note

3If the vertices are in different components then the distance is ∞
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that this contrasts with the ordinary chromatic numer, for which merely excluding
triangles from G already reduces the best possible upper bound ∆(G) + 1 on χ(G) by
a logarithmic factor ln(∆(G)).

Square of a line graph
Having discussed line graphs, claw-free graphs and squares of graphs, we can now in-
troduce one of the main topics of this thesis, namely the square of a line graph, L(G)2.
The strong clique number of a graph G is ω(L(G)2). Similarly, the strong chromatic
index of a graph G is defined as χ(L(G)2). It is instructive to observe that each colour
class in such a strong colouring must correspond to an induced matching of G, meaning
that every two edges of the colour class are nonincident and have no edge between them.
Despite elegant conjectures, analyzing optimal bounds for the strong chromatic index
is deceivingly hard. This is well illustrated by a naive attempt to apply a degeneracy
argument. Suppose we want to show that χ(L(G)2) ≤ f(∆(G)) for all graphs G and
for some nondecreasing function f . One could try to derive the existence of an edge
e ∈ E(G) that has small degree ≤ f(∆(G)) − 1 in L(G)2. Inductively we may then
assume that G− e has strong chromatic index ≤ f(∆(G)). There is at least one colour
not appearing in the neighbourhood (with respect to L(G)2) of e, ‘thus’ we can colour
e and obtain the desired strong f(∆(G))-colouring. However, this inductive argument
fails because L(G− e)2 6= L(G)2 − e. In other words: it is not enough to complete the
colouring on e, because after placing back e we also need to make sure that the edges
incident to e mutually have different colours.

We are interested in how the strong chromatic index behaves in terms of the max-
imum degree of the graph. Let us first have a small excursion to the behaviour
of a ‘typical’ random graph. In the Erdős-Renyi graph G = G(n, p) on n vertices
and with constant edge probability 0 < p < 1 it holds with high probability that

χ(L(G(n, p))2) ≤ (1 + o(1)) 3
4
n2p

logb n
, where b = 1/(1 − p) [47]. This implies that

with high probability, χ(L(G)2) = O
(
∆(G)2/ ln(∆(G))

)
. In the sparse regime, where

np < 1
100

√
log n/ log log n, it holds with high probability that χ(L(G)2) = max{d(u) +

d(v)− 1 : (u, v) ∈ E(G)} < 2∆(G).

Rather than further exploring the behaviour of a typical graph, we focus instead on
the extremal question: what is the largest possible value among all graphs with fixed
maximum degree ∆? According to a notorious conjecture of Erdős and Nešetřil (cf. [39])
it should hold for all graphs G with maximum degree ∆ that

χ(L(G)2) ≤
{

5∆2

4 if ∆ is even;
5∆2−2∆+1

4 if ∆ is odd.

If true, this bound is sharp, as exemplified by so-called blown-up 5-cycles, which are
graphs that can be obtained from a 5−cycle by ‘blowing up’ each vertex to a stable set
of size b∆/2c and/or d∆/2e and replacing each edge of the 5−cycle with a complete
bipartite graph between its corresponding stable sets.

Molloy and Reed [86] combined a structural estimate with a probabilistic colouring
method to find a fixed but very small ε > 0 such that χ(L(G)2) ≤ (2 − ε)∆2 for
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all graphs. Bruhn and Joos [65] optimized this technique considerably and obtained
χ(L(G)2) ≤ 1.93 ·∆2

We approach the Erdős-Nešetřil conjecture from two directions. In chapter 3,
we consider a strengthened form of the Erdős-Nešetřil conjecture. We ask whether
for all claw-free graphs G it holds that χ(G2) ≤ 5

4ω(G)2 if ω(G) is even, χ(G2) ≤
1
4

(
5ω(G)2 − 2ω(G) + 1

)
otherwise. Since line graphs are claw-free, this is a proper

generalization of the Erdős-Nešetřil conjecture. In chapter 3 we investigate claw-free
graphs with small clique number (ω(G) ∈ {3, 4}) and show that this stronger con-
jecture holds iff the original Erdős-Nešetřil conjecture holds true, for (simple) graphs
with maximum degree 3 respectively 4. Combining this with a result of Cranston [31],
it follows that χ(G2) ≤ 10 for all claw-free graphs with clique number 3, which is
sharp. For claw-free graphs with ω(G) ≥ 6, De Johannis de Verclos, Kang and Pastor
(JKS [63]) have verified a similar reduction to line graphs of a multigraph. Thus, in
terms of reducing to line graphs of multigraphs, only the case ω(G) = 5 remains open.
In their arguments, JKS first reduced the case of claw-free graphs to that of quasi-line
graphs (which is a technical class of graphs between line graphs and claw-free graphs).
Subsequently, they used a structure theorem of Chudnovksy and Seymour to reduce
to the case of the line graph of a multigraph. In our arguments, we take a more di-
rect approach, using a degeneracy argument. Such a degeneracy argument is however
not as straighforward in G2 as it is in G. Indeed, by adding a vertex v to G, two
vertices that were not adjacent in G2 can become adjacent in (G + v)2. Thus a pri-
ori, for a degeneracy argument it does not suffice to find a vertex of small degree in
G2. We correct for this with a slightly altered greedy procedure, given by Lemma 3.3.1.

In chapter 4, we approach the Erdős-Nešetřil conjecture by studying a weakening
rather than a strengthening. We consider the question of Faudree, Gýarfás, Schelp and
Tuza [44], whether ω(L(G)2) ≤ 5

4∆2 holds for all graphs, and in Theorem 4.1.5 we
prove it for all triangle-free graphs. Since the blown-up 5−cycles are triangle-free, this
bound is sharp, and due to the fractional version of Reed’s conjecture, we obtain as a
corollary that χf (G) ≤ 13

8 ∆(G)2 for all triangle-free G. For general graphs, the best
known strong clique bound is ω(L(G)2) ≤ 4/3 ·∆2, due to Faron and Postle [42].
In a classic paper, Faudree, Gýarfás, Schelp and Tuza [44] investigated how these
parameters behave in bipartite graphs. For bipartite graphs G of maximum degree
∆, they proved that ω(L(G))2 ≤ ∆2 and conjectured that more generally χ(L(G)2) ≤
∆2. These bounds are attained by the complete bipartite graph K∆,∆. In chapter
4 we generalize this strong clique statement. In particular we show in Lemma 4.3.1
that all C5−free multigraphs satisfy ω(L(G)2) ≤ σ(G)2/4 ≤ ∆(G)2, where σ(G) :=
maxxy∈E(G) deg(x) + deg(y) denotes the Ore-degree of G. In conclusion we see that,
with respect to the strong clique number, the (non)presence of C5’s distinguishes the
class of bipartite graphs from the class of all graphs.

Observing that the (conjectured) extremal value of the strong clique number and
the strong chromatic number are the same in the cases described up to now, one might
wonder whether this phenomenon is dominant in the world of higher graph powers.
We provide a negative answer. By a result of Mahdian [82], obtained with the pro-
bilistic method, there are graphs G of arbitrarily large girth such that χ(L(G)2) ≥
( 1

2 + o(1))∆(G)2/ ln(∆(G)). In contrast, we show that the strong clique number of
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high girth graphs is upper bounded by only a linear function of ∆. Indeed, for ev-
ery integer l ≥ 3, any graph G without cycles of order ∈ {l + 1, l + 2, l + 3} satisfies
ω(L(G)2) ≤ l · (∆− 1) + 2. We conjecture that actually excluding only one even cycle
Ck+1 is sufficient for linear behaviour, yielding ω(L(G)2) ≤ k(∆− k−1

2 ), and we prove
it for C4−free graphs. We identify hairy cliques (cliques with dangling edges attached
to them) as extremal graphs for this conjectured bound.
Since we investigated the behaviour of the strong clique number under exclusion of all
odd cycles (ie bipartite graphs) as well as under exlusion of one even cycle, it is natural
to investigate what happens if we exclude both. It turns out that the extremal value of
the strong chromatic index remains essentially unchanged, as there also exist bipartite
graphs G of arbitrarily large girth with χ(L(G)2) ≥ ( 1

2 + o(1))∆(G)2/ ln(∆(G)). On
the other hand, we conjecture that in any bipartite graph of maximum degree ∆ ≥ 2
that additionally contains no cycle of order 2k, the strong clique number is at most
k∆ + 1−k, which would be sharp if true. We provide evidence towards this conjecture
in Theorem 4.1.13 and Corollary 4.1.15
Along the way we have also investigated how the strong clique number behaves in terms
of the Hadwiger number and the maximum degree; see subsection 4.1.3. Roughly speak-
ing, we prove that ω(L(G)2) is at most the product of h(G) and ∆(G), and we derive
from Hadwiger’s conjecture that this should also be the best possible bound for the
strong chromatic index.

∞

Equitable colouring
An equitable colouring is a proper colouring of the vertices of a graph such that the
sizes of the colour classes pairwise differ by at most one. Correspondingly, the equi-
table chromatic number χeq(G) of a graph G is the minimum integer k such that G
can be equitably coloured with k colours. Unlike all types of colouring discussed up
to now, the property of being equitably colourable with k colours is not monotone
in k. That is, there are integers k < l and a graph (on more than l vertices) that
admits an equitable k−colouring but not an equitable l−colouring. For example: the
complete bipartite graph K2k+1,2k+1 has an equitable 2−colouring but is not equitably
(2k + 1)−colourable.
In 1964, Erdős conjectured that every graph of maximum degree ∆ has an equitable
(∆ + 1)−colouring. In 1970 this was confirmed by Hajnal and Szemerédi [52]. In 2006,
Kostochka and Kierstaed [77] found a much shorter and simpler proof, which moreover
provided a polynomial time algorithm that constructs an equitable (k + 1)−colouring
of any graph G with maximum degree ∆(G) ≤ k. Several seemingly basic problems re-
lated to the equitable chromatic number remain open. For example, in spirit of Brooks’
theorem, Chen, Lih and Wuh [76] conjectured that every connected graph with max-
imum degree ∆ ≥ 3 distinct from K∆+1 and K∆,∆ is equitably ∆−colourable. In
chapter 2, we study a conjectured generalization of the Hajnal-Szemerédi Theorem, in
terms of graph packing.
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Packing of graphs
There exists a packing of two graphs G1 and G2 if one of them is a subgraph of the
complement of the other graph. Many graph theoretical problems can be described
in the language of packings. For three examples, let G be a graph on n vertices and
note that (i): G contains a Hamiltonian cycle iff the cycle Cn packs with G, (ii): H
is a subgraph of G iff H packs with the complement of G, (iii): if G has more than
ex(n,H) edges then it must pack with the complement of H.

Our favourite parameter, the chromatic number, can be described in the language
of packing as well. The chromatic number of a graph G1 equals the least integer k such
that G1 packs with some graph G2 that consists of exactly k vertex-disjoint cliques
and has the same number of vertices as G1. Indeed, in such a packing, each clique of
G2 corresponds to a stable set -and thus to a colour class- of G1.

In chapter 2, we study the following conjecture from the seventies. Bollobás, El-
dridge and Catlin (BEC) conjectured that two graphs G1 and G2 on n vertices and with
maximum degrees ∆(G1) respectively ∆(G2) pack if (∆(G1)+1)(∆(G2)+1) ≤ n+1. If
true, it would constitute a significant generalization of the Hajnal-Szemerédi Theorem.

We consider the validity of the BEC-conjecture under the additional assumption
that G1 or G2 has bounded codegree. More precisely, we prove for all t ≥ 2 that,
if G1 does not have the complete bipartite graph K2,t as a subgraph and ∆(G1) >
17t ·∆(G2), then (∆(G1) + 1)(∆(G2) + 1) ≤ n + 1 implies that G1 and G2 pack. As
a corollary, we obtain that every K2,t−free graph on n vertices and with maximum
degree ∆ ≥

√
17t · √n has an equitable ∆−colouring. As an application, we derive

that the BEC conjecture also holds under the additional condition that both graphs do
not contain a 4−, 6−or 8−cycle as a subgraph and one of the graphs has large enough
maximum degree (≥ 107). The proofs are self-contained and of a combinatorial nature.

Recalling the Johansson-Molloy theorem that χ(G) = (1 + o(1))∆(G)/ ln(∆(G))
for triangle-free graphs, it seems natural that this can be generalized to the setting of

packing. In other words, is some condition of the form ∆(G1)
ln(∆(G1)) (∆(G2) + 1) ≤ cn for

some constant c > 0 sufficient for G1 and G2 to pack if G1 is triangle-free? Or more
modestly, is it true that every triangle-free graph G has an equitable colouring with
O(∆(G)/ log(∆(G)) colours?

∞

Percolation
In percolation theory, the main topic of study are the connected components of a
random subgraph of a fixed graph. Given an (infinite) graph G and some p ∈ [0, 1],
a random subgraph is obtained as follows. Each edge is retained with probability
p and discarded with probability 1 − p, independently. The corresponding product
probability measure is denoted Pp. In this random graph, the open cluster C(v) of a
vertex v is the connected component to which v belongs. By definition, the critical
probability pc = pc(G, v) of G and a vertex v is the supremum over all p ∈ [0, 1] for
which Pp (the cluster of v has finite size ) = 1. If the graph is vertex-transitive, pc only
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depends on G. The value of pc is far from known, except in special cases where certain
symmetries of G and/or its dual can be exploited.

A major open question is: for which graphs is pc strictly smaller than 1? An easy
example of a graph with pc = 1 is the graph with vertices Z and edges between subse-
quent integers. Benjamini and Schramm conjectured [9] that pc < 1 for all graphs with

isoperimetric dimension di > 1, where di := sup
{
d > 0 | infØ6=S⊆V (G)

|∂S|
|S|(d−1)/d > 0

}
.

Here ∂S denotes the boundary of S, the set of vertices in V (G)\S that have a neigh-
bour in S. This conjecture has been confirmed in several special cases, among which
are (roughly) transitive graphs of polynomial growth[23].

From now on, we consider percolation on the graph with vertices Zd and edges only
between nearest neighbours. This is a well-studied classic model. For dimension d = 2,
it is known that pc = 1/2 but pc is unknown and hard to approximate for larger d.

The behaviour of the random graph drastically changes around pc, since
Pp (there exists some cluster of infinite size) transitions from 0 if p < pc, to 1 if p >
pc. Moreover, it can be shown that (for p > pc) the infinite cluster is unique with
probability 1. What happens at pc itself remains an important open question, in
general. For nearest-neighbour edge percolation on Zd, it is conjectured that

θ(p) := Pp (the cluster of the origin has infinite size)

equals 0 for p = pc, which would imply the continuity of θ(p) as a function of p.
This has been confirmed for d = 2 and in high dimensions (d ≥ 11), but remains in
particular elusive for d = 3.

In chapter 6, we focus on what happens in high dimensions at pc. Even though
θ(pc) = 0 there, so that there should be no cluster of infinite size, there exists a natural
probability measure that in some sense conditions on the event that the cluster of the
origin is infinitely large. Under this alternative ‘Incipient Infinite Cluster’ measure, we
show that the cluster of the origin is almost surely a 4−dimensional object, in the sense
that in a box of radius r around the origin, the number of vertices belonging to the
cluster is of order r4. To put this in perspective, for p < pc the cluster of the origin is
Pp−almost surely 0−dimensional, while for p > pc it is Pp-almost surely d-dimensional.

∞
Notation

Basic knowledge of graph theory and probability theory is assumed. Notation can
differ slightly from chapter to chapter and therefore will be explained in each chap-
ter separately. In particular, in chapter 3, NG(S) denotes the open neighbourhood⋃
s∈S NG(s)\S of a set of vertices S in a graph G, while in the other chapters NG(S)

refers to the closed neighbourhood
⋃
s∈S NG(s).

Source material
Chapter 2 is based on the papers [20] and [22], as well as some small new results.
Chapters 3, 5 and 6 are almost literally the papers [21],[19],[18] respectively. Finally,
chapter 4 is part of a paper in preparation (joint with Ross J. Kang and François Pirot).
The result in the appendix has not been submitted for publication.





Chapter 2

On the
Bollobás–Eldridge–Catlin
conjecture

Two graphs G1 and G2 on n vertices are said to pack if there exist injective mappings
of their vertex sets into [n] such that the images of their edge sets are disjoint. A long-
standing conjecture due to Bollobás and Eldridge and, independently, Catlin, asserts
that, if (∆(G1)+1)(∆(G2)+1) ≤ n+1, then G1 and G2 pack. We consider the validity
of this assertion under the additional assumption that G1 or G2 has bounded codegree.
In particular, we prove for all t ≥ 2 that, if G1 contains no copy of the complete bipar-
tite graph K2,t and ∆(G1) > 17t ·∆(G2), then (∆(G1)+1)(∆(G2)+1) ≤ n+1 implies
that G1 and G2 pack. We also provide a mild improvement if moreover G2 contains
no copy of the complete tripartite graph K1,1,s, s ≥ 1.

As an application, we derive that the BEC conjecture also holds under the additional
condition that both graphs don’t contain a 4−, 6−or 8−cycle as a subgraph and one
of the graphs has large enough maximum degree (≥ 107).

Finally, we derive a bound that interpolates between a result of Eaton and a result
of Sauer and Spencer. For 0 ≤ q ≤ bn/2 + 1 − ∆(G1) − ∆(G2)c, we prove that if
∆(G1)∆(G2) < n/2+ q then G1 and G2 admit a degree ≤ 1 near-packing with at most
q common edges.

2.1 Packing graphs of bounded codegree

Let G1 and G2 be graphs on n vertices. (All graphs are assumed to have neither loops
nor multiple edges.) We say that G1 and G2 pack if there exist injective mappings
of their vertex sets into [n] = {1, . . . , n} so that their edge sets have disjoint images.
Equivalently, G1 and G2 pack if G1 is a subgraph of the complement of G2. The
maximum codegree ∆∧(G) of a graph G is the maximum over all vertex pairs of their
common degree, i.e. ∆∧(G) < t if and only if G contains no copy of the complete
bipartite graph K2,t. The maximum adjacent codegree ∆M(G) of G is the maximum

15
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over all pairs of adjacent vertices of their common degree, i.e. ∆M(G) < s if and only if
G contains no copy of the complete tripartite graph K1,1,s. Clearly, ∆M(G) ≤ ∆∧(G)
always. We let ∆1 and ∆2 denote the maximum degrees of G1 and G2, respectively, and
∆∧1 and ∆M

2 the corresponding maximum (adjacent) codegrees. We provide sufficient
conditions for G1 and G2 to pack in terms of ∆1, ∆2, ∆∧1 , ∆M

2 .
For integers t ≥ 2 and ∆2 ≥ 1, we define

α∗(t,∆2) :=
1

2
(2 + γ +

√
4γ + γ2), where γ =

∆2

∆2 + 1
· t− 1

t
.

Note α∗ = α∗(t,∆2) is the larger solution to the equation (α − 1)2 − γα = 0 and
1
8 (9 +

√
17) ≤ α ≤ 1

2 (3 +
√

5).

Theorem 2.1.1. Let G1 and G2 be graphs on n vertices with respective maximum
degrees ∆1 and ∆2. Let ∆∧1 be the maximum codegree of G1. Let t ≥ 2 be an integer
and let α > α∗ = α∗(t,∆2) and 0 < ε < 1/2 be reals. Then G1 and G2 pack if ∆∧1 < t
and n is larger than each of the following quantities:(

t+
α(α− 1)

(α− 1)2 − α

)
·∆2 + ∆1∆2, (2.1)

(2αt+ 2) ·∆2 + ((2α+ 1)t− 1) ·∆2
2 + (1− ε) ·∆1∆2, (2.2)

1 +

(
2 +

ε

1− 2ε

)
·∆2 + ∆1∆2, and (2.3)(

t+
3− ε

2

)
·∆2 +

3− ε
2

(t− 1) ·∆2
2 +

1 + ε

2
·∆1∆2. (2.4)

Theorem 2.1.2. Let G1 and G2 be graphs on n vertices with respective maximum
degrees ∆1 and ∆2. Let ∆∧1 be the maximum codegree of G1 and ∆M

2 the maximum
adjacent codegree of G2. Let s ≥ 1 and t ≥ 2 be integers and let α > α∗ = α∗(t,∆2)
be real. Then G1 and G2 pack if ∆∧1 < t, ∆M

2 < s, and n is larger than both of the
following quantities: (

t+
α(α− 1)

(α− 1)2 − α

)
·∆2 + ∆1∆2 and (2.5)

(2 + 2αt) ·∆2 + (s− 1) ·∆1 + ((2α+ 1)t− 1) ·∆2
2. (2.6)

For better context, we compare Theorems 2.1.1 and 2.1.2 to a line of work on graph
packing that was initiated in the 1970s [12, 24, 25, 94]. The following is a central
problem in the area.

Conjecture 2.1.3 (Bollobás and Eldridge [12] and Catlin [25]). Let G1 and G2 be
graphs on n vertices with respective maximum degrees ∆1 and ∆2. Then G1 and G2

pack if (∆1 + 1)(∆2 + 1) ≤ n+ 1.

If true, the statement would be sharp and would significantly generalise a celebrated
result of Hajnal and Szemerédi [52] on equitable colourings. Sauer and Spencer [94]
showed that 2∆1∆2 < n is a sufficient condition for G1 and G2 to pack, which is seen to
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be sharp when one of the graphs is a perfect matching. Thus far the Bollobás–Eldridge–
Catlin (BEC) conjecture has been confirmed in the following special cases: ∆1 = 2 [3];
∆1 = 3 and n sufficiently large [33]; G1 bipartite and n sufficiently large [32]; and G1 d-
degenerate, ∆1 ≥ 40d and ∆2 ≥ 215 [15]. We would also like to highlight the following
three results that can be considered approximate forms of the BEC conjecture. (a) The
condition (∆1 + 1)(∆2 + 1) ≤ 3n/5 + 1 is sufficient for G1 and G2 to pack, provided
that ∆1,∆2 ≥ 300 [68]. (b) The BEC condition is sufficient for G1 and G2 to admit
a ‘near packing’ in that the subgraph induced by the intersection of their images has
maximum degree at most 1 [35]. (c) If G2 is chosen as a binomial random graph of
parameters n and p such that np in place of ∆2 satisfies the BEC condition, then G1

and G2 pack with probability tending to 1 as n→∞ [13].

Corollary 2.1.4. Let G1, G2,∆1,∆2 and ∆∧1 be as before. Let t ≥ 2 be an integer.
Then G1 and G2 pack if ∆1∆2 + ∆1 ≤ n+ 1 and ∆∧1 < t and ∆1 > 17t ·∆2.

Proof. Choose ε = (2t − 2)/(4t − 3) and α = 3 in Theorem 2.1.1. Using that ∆1 >

17t∆2 >
(4t−3)(7t−1)

2t−2 ·∆2, it follows that max((2.1), (2.2), (2.3), (2.4)) ≤ (∆1 + 1)(∆2 +
1)− 1 ≤ n. So G1 and G2 pack.

We have the following results concerning the BEC conjecture.

Corollary 2.1.5. Given an integer t ≥ 2, the BEC conjecture holds under the addi-
tional condition that the maximum codegree ∆∧1 of G1 is less than t and ∆1 > 17t ·∆2.

We were unable to avoid the linear dependence on ∆2 in the lower bound condition
on ∆1. Although we have not seriously attempted to optimise the factor 17t above,
Theorem 2.1.2 improves on this factor under the additional assumption that ∆M

2 is
bounded, as exemplified by the following corollary.

Corollary 2.1.6. Given an integer t ≥ 2, the BEC conjecture holds under the addi-
tional condition that the maximum codegree ∆∧1 of G1 is less than t, G2 is triangle-free,
and ∆1 > (4 +

√
5)t ·∆2.

Proof. Choose α = 1
4t (6t+1+

√
20t2 + 4t+ 1) and s = 1 in Theorem 2.1.2. Using that

t+ α(α−1)
(α−1)2−α − 1 = (2α+ 1)t− 1 and that ∆1 > (4 +

√
5)t ·∆2 > ((2α+ 1)t− 1) ·∆2,

it follows that max((2.5), (2.6)) ≤ (∆1 + 1)(∆2 + 1)− 1 ≤ n. So G1 and G2 pack.

Application to equitable colourings

An equitable colouring is a proper vertex-colouring for which the sizes of the colour
classes pairwise differ by at most 1. By taking G2 to be a collection of (nearly) equal-
sized cliques, Corollary 2.1.4 implies that, if G is a K2,t-free graph of maximum degree
∆ with ∆ ≥

√
17t · √n, then the equitable chromatic number of G is at most ∆. Note

that this result cannot be obtained by the result of Hajnal and Szemerédi [52], which
says that the equitable chromatic number of every graph is at most ∆ + 1.

Corollary 2.1.7. Let t ≥ 2 be an integer. Let G1 be a K2,t−free graph on n vertices
with maximum degree ∆1, such that ∆1 ≥

√
17t · √n. Then there is a ∆1−equitable

colouring of G1.
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Proof. In general, n is not divisible by ∆1, so define the remainder r = ∆1 dn/∆1e−n
and the augmented graph G+

1 = G1 + Kr, where Kr is a complete graph. Write
n+ = n+ r for the order of G+

1 . Note that 0 ≤ r ≤ ∆1− 1, that ∆(G+
1 ) = ∆1 and that

n+ is divisile by ∆1.
Now choose G2 to be a collection of ∆1 disjoint cliques with degree ∆2, such that

∆1∆2 + ∆1 = n+. Note that ∆∧1 < t, because G1 is K2,t-free. Furthermore,

∆1 ≥
√

17t · √n ⇒ ∆2
1 + 17t > 17tn

⇔ ∆2
1 > 17t · (n+ ∆1 − 1−∆1)

⇒ ∆2
1 > 17t · (n+ r −∆1)

⇔ ∆1 > 17t · (n+/∆1 − 1)

⇔ ∆1 > 17t ·∆2.

So we can apply Corollary 2.1.4 to conclude that G+
1 and G2 pack. In such a

packing, each (maximal) clique in G2 corresponds to an independent set in G1. We
assign a colour to each of these ∆1 disjoint and equal-sized independent sets. Thus
we have derived the existence of a colouring of G+

1 with ∆1 equal-sized colour classes.
Since each vertex in Kr must have a different colour, this induces an equitable colouring
of G1 with ∆1 colours.

Possible generalizations

The BEC conjecture notwithstanding, naturally one might wonder whether Theo-
rem 2.1.1, or rather Corollary 2.1.5, could be improved according to a weaker form
of the BEC condition, as was the case for d-degenerate G1 [15]. In other words, it
would be interesting to improve upon the Ω(∆1∆2) terms appearing in each of (2.1)–
(2.4). We leave this to further study, but point out the following constructions where
G1 has low maximum codegree, which mark boundaries for this problem.

• When n is even, there are non-packable pairs (G1, G2) of graphs where G1 is a
perfect matching (so ∆∧1 = 0) and 2∆1∆2 = n, cf. [67].

• Bollobás, Kostochka and Nakprasit [14] exhibited a family of non-packable pairs
(G1, G2) of graphs where G1 is a forest (so ∆∧1 = 1) and ∆1 ln ∆2 ≥ cn for some
c > 0.

• If ∆∧(G) = 1, then the chromatic number ofG satisfies χ(G) = O(∆(G)/ ln ∆(G))
as ∆(G) → ∞, and there are standard examples having arbitrarily large girth
that show this bound to be sharp up to a constant factor, cf. [87, Ex. 12.7]. Since
the equitable chromatic number is at least the chromatic number, these examples
moreover yield non-packable pairs (G1, G2) of graphs having ∆1

ln ∆1
(∆2 + 1) ≥ cn

for some c > 0 and ∆∧1 = 1.

Since the examples can also have the maximum adjacent codegree ∆M
1 being zero,

this last remark hints at another natural line to pursue, which could significantly extend
both the result of Csaba [32] and a result of Johansson [64]. If ∆1 is large enough and
G1 is triangle-free, is some condition of the form ∆1

ln ∆1
(∆2 + 1) ≤ cn for some constant

c > 0 sufficient for G1 and G2 to pack?
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Structure

In the next section, we provide some notation and preliminary observations. In Sec-
tion 2.3, we discuss the common features of a hypothetical critical counterexample to
one of our theorems. In Section 2.4, we prove Theorems 2.1.1 and 2.1.2. We conclude
with some remarks about the results, proofs and further possibilities.

2.2 Notation and preliminaries

Here we introduce some terminology which we use throughout. We often call G1 the
blue graph and G2 the red graph. We treat the injective vertex mappings as labellings
of the vertices from 1 to n. However, rather than saying, “the vertex in G1 (or G2)
corresponding to the label i”, we often only say, “vertex i”, since this should never cause
any confusion. Our proofs rely on accurately specifying the neighbourhood structure
as viewed from a particular vertex. Let i ∈ [n]. The blue neighbourhood N1(i) of
i is the set {j | ij ∈ E(G1)} and the blue degree deg1(i) of i is |N1(i)|. The red
neighbourhood N2(i) and red degree N2(i) are defined analogously. For j ∈ [n], a red–
blue-link (or 2–1-link) from i to j is a vertex i′ such that ii′ ∈ E(G2) and i′j ∈ E(G1).
The red–blue-neighbourhood N1(N2(i)) of i is the set {j | ∃ red–blue-link from i to j}.
A blue–red-link (or 1–2-link) and the blue–red-neighbourhood N2(N1(i)) are defined
analogously.

In search of a certificate that G1 and G2 pack, without loss of generality, we keep
the vertex labelling of the blue graph G1 fixed, and permute only the labels in the red
graph G2. This can be thought of as “moving” the red graph above a fixed ground
set [n]. In particular, we seek to avoid the situation that there are i, j ∈ [n] for
which ij is an edge in both G1 and G2 — in this situation, we call ij a purple edge
induced by the labellings of G1 and G2. So G1 and G2 pack if and only if they
admit a pair of vertex labellings that induces no purple edge. In our search, we make
small cyclic sub-permutations of the labels (of G2), which are referred to as follows.
For i0, . . . , i`−1 ∈ [n], a (i0, . . . , i`−1)-swap is a relabelling of G2 so that for each
k ∈ {0, . . . , `− 1} the vertex labelled ik is re-assigned the label ik+1 mod `. In fact, we
shall only require swaps having ` ∈ {1, 2}. The following observation describes when
a swap could be helpful in the search for a packing certificate. This is identical to
Lemma 1 in [68].

Lemma 2.2.1. Let u0, . . . , u`−1 ∈ [n]. For every k, k′ ∈ {0, . . . , ` − 1}, suppose that
there is no red–blue-link from uk to uk+1 mod ` and that, if ukuk′ ∈ E(G2), then
u(k+1 mod `)u(k′+1 mod `) /∈ E(G1). Then there is no purple edge incident to any of
u0, . . . , u`−1 after a (u0, . . . , u`−1)-swap.

We will use a classic extremal set theoretic result to upper bound the size of certain
vertex subsets.

Lemma 2.2.2 (Corrádi [30]). Let A1, . . . , AN be k-element sets and X be their union.
If |Ai ∩Aj | ≤ t− 1 for all i 6= j, then |X| ≥ k2N/(k + (N − 1)(t− 1)).

Proof. Given x ∈ X, let d(x) := {i ∈ {1, . . . , N} | x ∈ Ai} denote the number of subsets
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it belongs to. Then for each i ∈ {1, . . . , N},

∑
x∈Ai

d(x) =

N∑
j=1

|Ai ∩Aj | = |Ai|+
∑
j 6=i
|Ai ∩Aj | ≤ k + (N − 1)(t− 1).

Summing over all sets Ai and using Jensen’s inequality yields

N∑
i=1

∑
x∈Ai

d(x) =
∑
x∈X

d(x)2 ≥ 1

|X|

(∑
x∈X

d(x)

)2

=
1

|X|

(
N∑
i=1

|Ai|
)2

=
(Nk)2

|X| .

Combining these two inequalities, we obtain (Nk)2 ≤ N · |X| · (k+ (N − 1)(t− 1)).

In particular, this implies the following.

Corollary 2.2.3. Let A1, . . . , AN be size ≥ k subsets of a set X. If k2 > (t− 1) · |X|
and |Ai ∩Aj | ≤ t− 1 for all i 6= j, then

N ≤ |X| · k − (t− 1)

k2 − (t− 1) · |X| .

Proof. Consider arbitrary subsets A∗1 ⊂ A1, . . . , A
∗
N ⊂ AN of size k. An application of

Corrádi’s lemma to A∗1, . . . , A
∗
N yields that |X| ≥ k2 ·N/(k+ (N − 1)(t− 1)), which is

easily seen to be equivalent to (k2−(t−1)·|X|)·N ≤ (k−t+1)·|X|. The corollary follows
after dividing both sides of the inequality by k2 − (t− 1) · |X|. Note that this division
does not cause a sign change because of the assumption that k2 > (t− 1) · |X|.

In particular (roughly speaking): if we have subsets of a set X that have pairwise
uniformly bounded overlap and are of size Ω(

√
|X|), then there are at most O(

√
|X|)

of them. This is the property that we will use.

2.3 Hypothetical critical counterexamples

The overall proof structure we use for both theorems is the same, and in this section
we describe common features and some further notation. Suppose the theorem (one
of Theorem 2.1.1 or 2.1.2) is false. Then there must exist a counterexample, that is,
a pair (G1, G2) of non-packable graphs on n vertices that satisfy the conditions of the
theorem.

Moreover, we may assume that (G1, G2) is a critical pair in the sense that G2 is
edge-minimal among all counterexamples. In other words, G1 and G2− e pack for any
e ∈ E(G2). There is no loss of generality, since the removal of an edge from G2 increases
neither ∆2 nor ∆M

2 and obviously affects none of ∆1, ∆∧1 and n, thus maintaining the
required conditions.

Now choose any edge e = uv ∈ E(G2). Criticality implies that there is a pair of
labellings of G1 and G2 such that e is the unique purple edge, for otherwise G1 and
G2 − e do not pack. Let us fix such a pair of labellings so that we can further describe
the neighbourhood structure as viewed from u (or v). Estimation of the sizes of subsets
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v

u

Figure 2.1: All vertices (except possibly v) are reachable by a link from u (Claim 2.3.1).

in this neighbourhood structure is our main method for deriving upper bounds on n
that in turn yield the desired contradiction from which the theorem follows.

We need the definition of the following vertex subsets (which are analogously defined
for v also):

A(u) := N2(N1(u)) \ (N1(u) ∪N2(u) ∪N1(N2(u))),

B(u) := N1(N2(u)) \ (N1(u) ∪N2(u) ∪N2(N1(u))),

A∗(u) := N2(N1(u)) \ (N2(u) ∪N1(N2(u))), and

N∗1 (u) := N1(u) ∩ (N1(N2(u)) \ (N2(u) ∪N2(N1(u)))).

One justification for specifying the above subsets is that the following two claims (which
are essentially Claims 1 and 2 in [68]) hold.

Claim 2.3.1. For all w ∈ [n] \ {v}, there is a red–blue-link or a blue–red-link from u
to w.

Proof. If not, then by Lemma 2.2.1, a (u,w)-swap yields a new labelling such that uv
is not purple anymore and no new purple edges are created. Thus G1 and G2 pack, a
contradiction. See Figure 2.1.

Claim 2.3.2. For all a ∈ A∗(u) and b ∈ B(u), there is a red–blue-link from a to b.

Proof. Since B(u) ∩ N1(u) = B(u) ∩ N2(u) = Ø and A∗(u) ∩ N2(u) = Ø, we have
that bu /∈ E(G1) ∪ E(G2) and ua /∈ E(G2). Furthermore, since A∗(u) ∩N1(N2(u)) =
B(u)∩N2(N1(u)) = Ø, there is no red–blue-link from u to a or from b to u. Now suppose
that there is also no red–blue-link from a to b. Then it follows from Lemma 2.2.1 that
after a (u, a, b)-swap there is no purple edge incident to any of u, a, b, which implies
that there is no purple edge at all. So we have obtained a packing of G1 and G2, a
contradiction.
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v = N2(u) ∩N1(u)

u

N2(u)
N1(u)

B(u) A(u)

Figure 2.2: The neighbourhood structure of a hypothetical critical counterexample, as
seen from u.

In the next claim, we list three upper bounds on the total number n of vertices in
terms of the sizes of the vertex subsets defined above. In the proofs of Theorems 2.1.1
and 2.1.2, we consider several cases for which we prove at least one of these upper
bounds to be small enough for a contradiction with the assumed lower bounds on n.

Claim 2.3.3. The total number n of vertices is at most each of the following quantities:

1. |N2(u)|+ |A∗(u)|+ |N1(N2(u))|,

2. |N∗1 (u)|+ |N2(u)|+ |B(u)|+ |N2(N1(u))|,

3. |A∗(v)|+ |A∗(u)|+ | (N2(u) ∪N1(N2(u))) ∩ (N2(v) ∪N1(N2(v))) |.

Proof. In all cases, [n] equals the union of the neighbourhood sets that occur in the
upper bound.

1 The union of N2(u), A∗(u) and N1(N2(u)) covers {v} ∪N2(N1(u))∪N1(N2(u)),
which by Claim 2.3.1 equals [n].

2 The union of N∗1 (u), N2(u), B(u) and N2(N1(u)) covers {v} ∪ N2(N1(u)) ∪
N1(N2(u)), which equals [n].

3 By the proof of (i), [n] is the union of A∗(u) and N2(u) ∪ N1(N2(u)) as well as
the union of A∗(v) and N2(v) ∪ N1(N2(v)). It follows that [n] also is the union
of A∗(u), A∗(v) and (N2(u) ∪N1(N2(u))) ∩ (N2(v) ∪N1(N2(v))).

The reason for working with N∗1 (u) and A∗(u) rather than the simpler sets N1(u)
and A(u) is the following. Under the requirement that the codegree ∆∧1 of G1 is less
than t, we can upper bound |N∗1 (u)| entirely in terms of ∆2. This is sharper than
the trivial bound |N1(u)| ≤ ∆1 because we work under conditions with ∆1 rather
larger than ∆2. Similarly, since N∗1 (u) ⊂ N1(u), we need to compensate for the loss
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of covered vertices by working with the slightly enlarged set A∗(u), rather than A(u).
The following claims use the condition ∆∧1 < t (which is assumed by both theorems).

Claim 2.3.4. |N∗1 (u)| ≤ (t− 1) ·∆2.

Proof. Suppose |N1(u) ∩ N1(N2(u))| ≥ (t − 1) · ∆2 + 1, then there is at least one
x ∈ N2(u) such that |N1(u) ∩ N1(x)| ≥ 1

|N2(u)| · ((t− 1) ·∆2 + 1) > t − 1, which

contradicts ∆∧1 < t.

The following claim (in combination with Corrádi’s lemma) is useful for an upper
bound on |B(u)| that is only linear in ∆2, provided that |A∗(u)| is at least quadratic
in ∆2. See Case 1 in the proof of Theorem 2.1.1.

Claim 2.3.5. For any b ∈ B(u), |N1(b) ∩A∗(u)| ≥ |A∗(u)|/∆2 − t(∆2 + 1).

Proof. For all b ∈ N1(N2(u)) it holds that |N1(b) ∩ N1(N2(u))| ≤ (t − 1) · |N2(u)| ≤
(t−1)·∆2. Indeed, otherwise there would exist a blue copy of K2,t in the graph induced
by N1(N2(u)) ∪ N2(u). Similarly, |N1(b) ∩ N1(u)| ≤ t and |N1(b) ∩ N2(u)| ≤ ∆2. So
for every b ∈ N1(N2(u)), at most t · (∆2 + 1) blue neighbours of b are in [n] \ A(u).
So in particular, for every b ∈ B(u), at most t · (∆2 + 1) blue neighbours of b are in
[n] \A∗(u).

Using Claim 2.3.2 and the fact that each blue neighbour of a fixed b ∈ B(u) has at
most ∆2 red neighbours in A∗(u), we see that every b ∈ B(u) has at least d|A∗(u)|/∆2e
blue neighbours, and thus at least |A∗(u)|/∆2−t(∆2 +1) blue neighbours in A∗(u).

2.4 Proofs

2.4.1 Proof of Theorem 2.1.1

Suppose the theorem is false. Consider a critical counterexample, a pair of non-packable
graphs (G1, G2), with G2 edge-minimal, satisfying the constraints of the theorem. We
distinguish three cases, for each of which we derive an upper bound on n, given by
one of the inequalities (2.8), (2.10) and (2.16). At least one of these three inequalities
should hold, so together they contradict the condition that max ((2.8), (2.10), (2.16)) =
max((2.1), (2.2), (2.3), (2.4)) < n, thus proving the theorem.

1. There exists a vertex u ∈ [n] and there are labellings of G1 and G2 such that u
is incident to the unique purple edge and |A∗(u)| ≥ αt ·∆2(∆2 + 1).

2. Case 1 does not hold and furthermore |N2(u) ∩ N2(v)| < (1 − ε) · ∆2 for some
edge uv ∈ E(G2).

3. Case 1 does not hold and |N2(u) ∩N2(v)| ≥ (1− ε) ·∆2 for every uv ∈ E(G2).

We now proceed with deriving upper bounds on n for each of these three cases.
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v

u

B(u)
very
small

A∗(u)
large

Figure 2.3: A depiction of Case 1 of Theorem 2.1.1, that |A∗(u)| = Ω(∆2
2) implies

|B(u)| = O(∆2).

Bound for Case 1. Choose a vertex u ∈ [n] and labellings of G1 and G2 such
that u is incident to the unique purple edge and |A∗(u)| ≥ αt · ∆2(∆2 + 1). See
Figure 2.3 for a depiction of the argumentation in this case. From now on, we write
k := |A∗(u)|/∆2−t(∆2+1). Our first tool is Claim 2.3.5, which yields that all b ∈ B(u)
satisfy |N1(b)∩A∗(u)| ≥ k. Note that k ≥ 1, since α > 1. Our second tool is Corrádi’s
lemma, or rather Corollary 2.2.3, which we apply with X = A∗(u) and N = |B(u)|
and with size ≥ k subsets A1, . . . , AN ⊂ X given by N1(b) ∩ A∗(u), for all b ∈ B(u).
Note that |Ai ∩Aj | ≤ t− 1 for all i 6= j, or else there would be a blue copy of K2,t.

In order to apply Corollary 2.2.3, we need to check that its condition k2 > (t −
1) · |A∗(u)| holds. For that, we write β := |A∗(u)|/(t∆2(∆2 + 1)), so that k = (β −
1)t(∆2 + 1). Now

k2 − (t− 1) · |A∗(u)| = ((β − 1)t(∆2 + 1))
2 − βt∆2(∆2 + 1)(t− 1)

=
(
(β − 1)2 − γ · β

)
· (t(∆2 + 1))2,

which is positive if and only if (β−1)2−γβ > 0, which holds true because β ≥ α > α∗.
Thus, by Corollary 2.2.3, we obtain

|B(u)| ≤ |A∗(u)| · k − (t− 1)

k2 − (t− 1) · |A∗(u)| =
1− t−1

k
k

|A∗(u)| − t−1
k

.

The numerator and denominator of the right hand side are both positive, so we can
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bound and rearrange as follows:

|B(u)| ≤
(

k

|A∗(u)| −
t− 1

k

)−1

=

(
(β − 1)t(∆2 + 1)

βt∆2(∆2 + 1)
− t− 1

(β − 1)t(∆2 + 1)

)−1

= ∆2 ·
(
β − 1

β
− 1

β − 1
· ∆2

∆2 + 1
· t− 1

t

)−1

= ∆2 ·
(
β − 1

β
− γ

β − 1

)−1

≤ ∆2 ·
α(α− 1)

(α− 1)2 − γα, (2.7)

where the last step holds because β ≥ α > α∗ and α∗ is the larger singular point of
β(β−1)

(β−1)2−γβ , which is a decreasing function of β for all β > α∗.

Evaluating (2.7) and Claim 2.3.4 in the upper bound of Claim 2.3.32 yields

n ≤ |N∗1 (u)|+ |N2(u)|+ |B(u)|+ |N2(N1(u))|

≤ (t− 1) ·∆2 + ∆2 +
α(α− 1)

(α− 1)2 − α ·∆2 + ∆1∆2

=

(
t+

α(α− 1)

(α− 1)2 − α

)
·∆2 + ∆1∆2. (2.8)

Bound for Case 2. Choose labellings of G1 and G2 such that there is a unique
purple edge uv that satisfies |N2(u) ∩N2(v)| < (1− ε) ·∆2. Note that the inequalities
|A∗(u)| < αt ·∆2(∆2 +1) and |A∗(v)| < αt ·∆2(∆2 +1) are satisfied as well, as a direct
consequence of the assumptions of Case 2.

We proceed with deriving a technical estimate on an intersection of neighbourhood
sets. For each x ∈ N2(u) \N2(v) and y ∈ N2(v) \N2(u) we have x 6= y and therefore
absence of blue copies of K2,t implies the inequality |N1(x) ∩N1(y)| ≤ t− 1. So

|N1(N2(u) \N2(v)) ∩N1(N2(v) \N2(u))| ≤
∑

x∈N2(u)\N2(v)

∑
y∈N2(v)\N2(u)

|N1(x) ∩N1(y)|

≤ |N2(u) \N2(v)| · |N2(v) \N2(u)| · (t− 1)

≤ (∆2 − |N2(u) ∩N2(v)|)2 · (t− 1).

Furthermore, since |N2(u) ∩N2(v)| < (1− ε) ·∆2,

|N1(N2(u)) ∩N1(N2(v))| ≤ |N1(N2(u) ∩N2(v))|+ |N1(N2(u) \N2(v)) ∩N1(N2(v) \N2(u))|
< ∆1 · |N2(u) ∩N2(v)|+ (∆2 − |N2(u) ∩N2(v)|)2 · (t− 1)

≤ max
p∈{0,1,2,...,b(1−ε)·∆2c}

(
∆1 · p+ (∆2 − p)2 · (t− 1)

)
.

See Figure 2.4. Finally, we evaluate this in Claim 2.3.33 to find the following bound
on n:

n ≤ |A∗(v)|+ |A∗(u)|+ | (N2(u) ∪N1(N2(u))) ∩ (N2(v) ∪N1(N2(v))) |
≤ |A∗(v)|+ |A∗(u)|+ |N2(u)|+ |N2(v)|+ |N1(N2(u)) ∩N1(N2(v))|
≤ 2αt ·∆2(∆2 + 1) + 2∆2 + max

p∈{0,1,2,...,b(1−ε)·∆2c}

(
∆1 · p+ (∆2 − p)2 · (t− 1)

)
.

(2.9)
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v u

A∗(v)
small

A∗(u)
small

N1(N2(u) ∩N2(v))

small

N1(N2(u) \N2(v)) ∩N1(N2(v) \N2(u))
small

Figure 2.4: A depiction of Case 2 of Theorem 2.1.1, that |N1(N2(u)) ∩ N1(N2(v))| is
small.

In particular, this implies the slightly rougher bound

n ≤ 2αt ·∆2(∆2 + 1) + 2∆2 + (1− ε) ·∆1∆2 + ∆2
2 · (t− 1). (2.10)

Bound for Case 3. Choose a pair of labellings of G1 and G2 that induces a unique
purple edge uv. The assumptions of this case imply, in particular, that in the red graph
the neighbourhoods of each pair of adjacent vertices overlap significantly: |N2(x) ∩
N2(y)| ≥ (1− ε) ·∆2 for each xy ∈ E(G2).

We will derive two consequences, namely the implication(
|A∗(u)| ≥ 1 + ∆2 +

ε ·∆2

1− 2ε

)
=⇒

(
|B(u)| ≤ (t− 1) ·∆2

2

)
(2.11)

and the inequality

|N2(N1(u))| ≤ 1 + ε

2
∆1∆2 +

1− ε
2

(t− 1) ·∆2
2 +

3

2
∆2. (2.12)
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We start with proving the statement (2.11), the first consequence. See Figure 2.5.
Suppose a ∈ A∗(u) \N2(u) has a red neighbour x ∈ N2(u). Then ux and ax are edges
of G2, so |N2(a) ∩ N2(x)| ≥ (1 − ε)∆2 and |N2(u) ∩ N2(x)| ≥ (1 − ε)∆2. Combining
this with the obvious fact that |N2(x)| ≤ ∆2 yields that

|N2(a) ∩N2(u)| ≥ (1− 2ε) ·∆2. (2.13)

Let us define

A∗∗(u) := {a ∈ A∗(u) | a has a red neighbour in N2(u)} .

It follows from (2.13) that
∑
a∈A∗∗(u) |N2(a) ∩N2(u)| ≥ |A∗∗(u)| · (1− 2ε) ·∆2, so∑

x∈N2(u)

|N2(x)| ≥
∑

x∈N2(u)

|N2(x) ∩N2(u)|+
∑

a∈A∗∗(u)

|N2(a) ∩N2(u)|

≥ (1− ε)∆2 · |N2(u)|+ |A∗∗(u)| · (1− 2ε) ·∆2,

and (crucially) since
∑
x∈N2(u) |N2(x)| ≤ ∆2 · |N2(u)|, it follows that

|A∗∗(u)| ≤ |N2(u)| ·∆2 − (1− ε) ·∆2|N2(u)|
(1− 2ε) ·∆2

=
ε · |N2(u)|

1− 2ε
. (2.14)

Next, suppose we would have that |A∗(u)| ≥ 1 + |N2(u)| + |A∗∗(u)|. Then there
exists a vertex a ∈ A∗(u) \ A∗∗(u). By the definition of A∗∗(u), this vertex satisfies
N2(a)∩N2(u) = Ø. Furthermore, since a ∈ A∗(u), we have that for all b ∈ B(u) there
is a red–blue-link from a to b. In other words, B(u) = N1(N2(a))∩B(u). This implies
that |B(u)| = |N1(N2(a))∩B(u)| ≤ |N1(N2(a))∩N1(N2(u))| ≤ (t− 1) ·∆2

2, where the
last inequality is a consequence of the facts that N2(a) ∩N2(u) = Ø and G1 does not
contain a copy of K2,t. In summary, we have shown the implication

|A∗(u)| ≥ 1 + |N2(u)|+ |A∗∗(u)| =⇒ |B(u)| ≤ (t− 1) ·∆2
2. (2.15)

Combining (2.14) and (2.15) yields our first desired main consequence (2.11).
We now prove inequality (2.12), the second consequence. See Figure 2.6. First, the

absence of blue copies ofK2,t implies that for every x ∈ N2(u) we have |N1(x)∩N1(u)| ≤
t− 1. Therefore

|N1(u) ∩N1(N2(u))| ≤ |N2(u)| · max
x∈N2(u)

(|N1(x) ∩N1(u)|) ≤ ∆2 · (t− 1).

In other words, there is a red–blue-link from u to y for at most ∆2 · (t − 1) vertices
y ∈ N1(u). Recalling that there is a link from u to every vertex (possibly with the
exception of v), it follows that there are at least h := |N1(u)| − (t− 1)∆2 − 1 vertices
y ∈ N1(u) for which there is a blue–red-link (and no red–blue-link) from u to y. In
other words, m := |N1(u) ∩ N2(N1(u))| ≥ h. It follows from the definition of blue–
red-link that any y1 ∈ N1(u) ∩ N2(N1(u)) is connected to at least one other vertex
y2 ∈ N1(u) ∩N2(N1(u)) by a red edge.

This means that N1(u)∩N2(N1(u)) can be covered by a collection of vertex-disjoint
red stars S1, S2, . . . that each have at least two vertices (unless m ∈ {0, 1}, in which
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v

u

a

B(u)
small

A∗(u)
not very small

Figure 2.5: A depiction of (2.11) in Case 3 of Theorem 2.1.1.
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v

u

N1(u) ∩ (N1(N2(u))\N2(N1(u)))

very small

N1(u) ∩N2(N1(u)))

N2(N1(u) ∩N2(N1(u)))

small

N2 (N1(u) ∩ (N1(N2(u))\N2(N1(u))))

small

small

small

small

Figure 2.6: A depiction of (2.12) in Case 3 of Theorem 2.1.1.

case inequality (2.12) is clearly satisfied). Let S be one such star, with central vertex y∗

and leaves y1, y2 . . . , y|S|−1. Each of its edges has a large common red neighbourhood:
for all j ∈ {1, 2, . . . , |S| − 1} it holds that |N2(y∗) ∩N2(yj)| ≥ (1 − ε) ·∆2. Therefore
|⋃y∈S N2(y)| ≤ |N2(y∗)| +∑y∈S\{y∗} |N2(y)\N2(y∗)| ≤ (1 + ε · (|S| − 1)) ·∆2, which

is at most 1+ε
2 · |S| ·∆2. So

|N2 (N1(u) ∩N2(N1(u))) | =

∣∣∣∣∣∣
⋃
i

⋃
y∈Si

N2(y)

∣∣∣∣∣∣ ≤
∑
i

∣∣∣∣∣∣
⋃
y∈Si

N2(y)

∣∣∣∣∣∣
≤
∑
i

1 + ε

2
· |Si| ·∆2 =

m

2
· (1 + ε) ·∆2.

Last, note that

|N1(u) ∩ (N1(N2(u)) \N2(N1(u)))| = |N1(u)| −m− 1{@ link from u to v} ≤ |N1(u)| −m.
We are now ready to derive (2.12):

|N2(N1(u))| ≤ |N2 (N1(u) ∩N2(N1(u))) |+
|N2 (N1(u) ∩ (N1(N2(u)) \N2(N1(u)))) |+ |N2(v)|

≤ m

2
· (1 + ε) ·∆2 + (|N1(u)| −m) ·∆2 + ∆2 =: g(m).
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Since ∆2 ≥ 0 and ε < 1/2, the function g(x) is nonincreasing on the whole of R.
Since h ≤ m, it follows that g(m) ≤ g(h). So

|N2(N1(u))| ≤ g(|N1(u)| − (t− 1)∆2 − 1)

=
1 + ε

2
· (|N1(u)| − (t− 1) ·∆2 − 1) ·∆2 + (t− 1) ·∆2

2 + 2∆2

≤ 1 + ε

2
·∆1∆2 +

1− ε
2
· (t− 1) ·∆2

2 +
3− ε

2
·∆2,

as desired.
Finally, we evaluate (2.11) and (2.12) in the bounds on n given by Claim 2.3.3,

parts 1 and 2, to obtain

n ≤ min (|N1(N2(u))|+ |A∗(u)|+ |N2(u)|, |N2(N1(u))|+ |N2(u)|+ |N∗1 (u)|+ |B(u)|)

≤ min

(
∆1∆2 + ∆2 + |A∗(u)|, 1 + ε

2
∆1∆2 +

1− ε
2

(t− 1)∆2
2 +

(
t+

3− ε
2

)
∆2 + |B(u)|

)
= ∆1∆2 + ∆2 + min

(
|A∗(u)|, |B(u)|+

(
t+

1− ε
2

)
∆2 −

1− ε
2

(
∆1∆2 − (t− 1)∆2

2

))
≤ ∆1∆2 + ∆2 + max

(
1 + ∆2 +

ε∆2

1− 2ε
,

3− ε
2

(t− 1)∆2
2 −

1− ε
2

∆1∆2 +

(
t+

1− ε
2

)
∆2

)
,

(2.16)

where we employed Claim 2.3.3 in the first line, Claim 2.3.4 and inequality (2.12) in
the second line and implication (2.11) in the last line.

2.4.2 Proof of Theorem 2.1.2

Suppose the theorem is false. Consider a critical counterexample, a pair of non-packable
graphs (G1, G2) satisfying the constraints of the theorem, such that there is a near-
packing with a unique purple edge uv. We distinguish two cases, Cases 1 and 2.
From the first we derive the inequality (2.17) and from the second we obtain the
inequality (2.18). Together they contradict the condition that max((2.5), (2.6)) < n,
thus proving the theorem.

1. |A∗(u)| ≥ αt ·∆2(∆2 + 1) or |A∗(v)| ≥ αt ·∆2(∆2 + 1).

Without loss of generality, we assume |A∗(u)| ≥ αt ·∆2(∆2 + 1). From here the proof
is the same as for Case 1 in the proof of Theorem 2.1.1, leading to the same bound,

n ≤
(
t+

α(α− 1)

(α− 1)2 − α

)
·∆2 + ∆1∆2. (2.17)

2. Case 1 does not hold.

From here we proceed almost exactly as for Case 2 in the proof of Theorem 2.1.1, the
difference being that instead of the upper bound |N2(u)∩N2(v)| < (1− ε) ·∆2 we use
|N2(u) ∩ N2(v)| < s, which holds due to the additional condition ∆M

2 < s. (Compare
with (2.10).) It follows that

n ≤ 2αt ·∆2(∆2 + 1) + 2∆2 + ∆1 · (s− 1) + ∆2
2 · (t− 1). (2.18)



2.4. PROOFS 31

Concluding remarks

We wish to make the following remarks about Theorems 2.1.1 and 2.1.2.

• In Theorem 2.1.1, the bottleneck is the quantity (2.2), which corresponds to the
bound (2.10) of Case 2. So improving in this case would improve the overall
bound on n, albeit not by much.

• The condition in Theorem 2.1.2 that ∆M
2 < s is equivalent to “|N2(x)∩N2(y)| <

s for all xy ∈ E(G2)”. With a little adaptation, we can replace this by the
weaker but perhaps obscure condition that G2 has no subgraph G!

2 such that
|N2(x) ∩ N2(y)| ≥ s for all xy ∈ E(G!

2). Indeed, this property is invariant
under edge removal, and so holds for an edge-minimal critical counterexample,
which therefore has an edge uv with |N(u)∩N(v)| < s, for which we can choose
labellings such that uv is the unique purple edge. From here, one again proceeds
exactly as in Case 2 of the proof of Theorem 2.1.1.

• Theorem 2.1.2 yields a better bound than Theorem 2.1.1 only if ∆1 is much larger
than ∆2 and s, t are both small.
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2.5 Application to packing graphs of even girth 10

The purpose of this section is to provide an application of Theorem 2.1.1. We give a
combinatorial proof that the BEC conjecture holds for every pair of graphs neither of
which contains a 4-, 6- or 8-cycle as a subgraph — i.e. both of which have even girth
at least 10 — provided at least one of the graphs has large enough maximum degree.
From now on, we always assume for convenience that ∆1 ≥ ∆2.

Theorem 2.5.1. If G1 and G2 are graphs on n vertices with respective maximum
degrees ∆1 and ∆2 such that (∆1 + 1)(∆2 + 1) ≤ n+ 1, then they pack provided neither
contains a 4-, 6- or 8-cycle and either ∆1 ≥ 940060 or ∆1 ≥ ∆2 ≥ 27620.

Central to the proof of Theorem 2.1.1 was a lemma of Corrádi [30]. We use it again
for the proof of Theorem 2.5.1, but the application is slightly more involved as we shall
see in Section 2.5.2.

It is important to note that Theorem 2.5.1 can also be obtained by applying the
earlier work of Bollobás, Kostochka and Nakprasit [15, Thm. 2] for packing with a
d-degenerate graph, provided we also use a classic bound on the Turán number of even
cycles [16], cf. also [90]. The novel contribution here is thus our proof strategy, which
in particular does not use any probabilistic methodology. We have optimism that this
strategy may be helpful for other related graph packing problems.

As mentioned, an important ingredient of the proof of Theorem 2.5.1 is the follow-
ing special case (t = 2) of Corollary 2.1.5.

Corollary 2.5.2. If G1 and G2 are graphs on n vertices with respective maximum
degrees ∆1 and ∆2 such that (∆1 + 1)(∆2 + 1) ≤ n + 1, then they pack provided G1

contains no 4-cycle and ∆1 > 34∆2.

Therefore, for Theorem 2.5.1, we may restrict our attention to the case where ∆1

and ∆2 are relatively close to each other, i.e. ∆2 ≤ ∆1 ≤ 34∆2. The following theorem
yields a bound that is sufficiently strong in that regime, and so it is the main objective
of this paper.

Theorem 2.5.3. Two graphs G1 and G2 on n vertices with respective maximum degrees
∆1 ≥ ∆2 pack if the following two properties hold.

• Neither contains a 4-, 6- or 8-cycle

• There exists an integer t ≥ 2 for which

4Ct ·∆1

√
∆1 + 4

t ·∆1∆2 + 7(∆1 + ∆2) < n,

where Ct :=
√

1.37
0.37
√
t−1

+
√

1.37(t− 1).

Let us now briefly show how Theorems 2.5.2 and 2.5.3 imply Theorem 2.5.1.
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Proof of Theorem 2.5.1. Suppose there are graphs G1 and G2 that form a counterex-
ample. Routine arithmetic manipulations show that, if for some t ≥ 2√

∆1 <
t− 4

4tCt
∆2 −

3

Ct
=

1

4tCt
((t− 4)∆2 − 12t), (2.19)

then 4Ct ·∆1

√
∆1 + 4

t ·∆1∆2 + 7(∆1 + ∆2) is strictly less than (∆1 + 1)(∆2 + 1) −
(1 + 6(∆1 −∆2)) ≤ (∆1 + 1)(∆2 + 1)− 1 ≤ n. So G1 and G2 pack by Theorem 2.5.3,
contradiction.

Moreover, by Theorem 2.5.2, if

∆1 ≥ 34 ·∆2, (2.20)

then G1 and G2 pack, also a contradiction. Thus neither of (2.19) and (2.20) holds,
and so

136tCt
t− 4

(√
∆1 +

3

Ct

)
≥ 34∆2 > ∆1 ≥

1

16t2C2
t

((t− 4)∆2 − 12t)
2
.

This in turn yields the following two quadratic polynomial inequalities:

(t− 4)2∆2
2 − (544t2C2

t + 24t)∆2 + 144t2 < 0 and

(t− 4)∆1 − 136tCt
√

∆1 − 408t < 0.

A good choice of t turns out to be t = 15. Substituting this (and the formula for
Ct) into the above two inequalities yields that ∆2 < 27620 and ∆1 < 940060. This
contradicts our assumptions on ∆1 and ∆2, and this completes the proof.

We have made little effort to optimise the boundary constants 940060 and 27620.
These constants partly depend on the constant 34 in Corallary 2.5.2, which we believe
can be lowered. To be more specific, any improvement of the constant 34 by a factor C
will yield a corresponding improvement by approximately a factor C2 for the bounds
on ∆1 and ∆2 in Theorem 2.5.1.

2.5.1 A hypothetical critical counterexample to Theorem 2.5.1

We begin the proof of Theorem 2.5.3 in this section and continue it in the next two
sections. Our proof is by contradiction. Just as in the proofs of Theorems 2.1.1 and
2.1.2, we consider an edge-minimal counterexeample. That is, we choose a pair (G1, G2)
of non-packable graphs on n vertices that satisfy the conditions of Theorem 2.5.1, where
G2 is edge-minimal over all such pairs (G1, G2). This again yields a labelling of G1

and G2 such that e = uv ∈ E(G2) is the unique purple edge. Thus, we can define
A(u), B(u), A∗(u) and B∗(u) as before. These sets are analogously defined for v also,
and indeed for any element of [n]. The following two claims are analogues of claims
2.3.1 and 2.3.2, with exactly the same proof.

Claim 2.5.4. For all w ∈ [n] \ {v}, there is a red–blue-link or a blue–red-link from u
to w.

For all w ∈ [n] \ {u}, there is a red–blue-link or a blue–red-link from v to w.
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Claim 2.5.5. For all a ∈ A∗(u) and b ∈ B(u), there is a red–blue-link from a to b.
For all b ∈ B∗(u) and a ∈ A(u), there is a blue–red-link from b to a.

We may assume that ∆1,∆2 ≥ 2 since the BEC conjecture is known for ∆2 = 1.
Then the following claim shows that neither of A∗(u) and B∗(u) is empty.

Claim 2.5.6. |A∗(u)| ≥ ∆1 − 1 and |B∗(u)| ≥ ∆2 − 1. And so |A∗(u)|, |B∗(u)| ≥ 1.

Proof. Suppose otherwise. If |A∗(u)| ≤ ∆1 − 2, note that [n] ⊆ N1(N2(u)) ∪ A∗(u) ∪
N2(u) by Claim 2.5.4, and so

n ≤ |N1(N2(u))|+ |A∗(u)|+ |N2(u)| ≤ ∆1∆2 + ∆1 − 2 + ∆2.

Symmetrically, if |B∗(u)| ≤ ∆2 − 2, then

n ≤ |N2(N1(u))|+ |B∗(u)|+ |N1(u)| ≤ ∆1∆2 + ∆2 − 2 + ∆1.

In either case, we obtain a contradiction to the assumption that n ≥ (∆1 + 1)(∆2 +
1)− 1.

2.5.2 Bounding second order neighbourhoods

The following technical bound forms the core of the argument. It bounds the in-
tersection of any two mixed second order neighbourhoods in our hypothetical critical
counterexample. The bound relies on an application of Corrádi’s lemma (Lemma 2.2.3).

Claim 2.5.7. For any integer t ≥ 2 and distinct a, b ∈ [n],

|N1(N2(a)) ∩N1(N2(b))| ≤ ∆1 + ∆2 +
√

1.37(t− 1)∆2

√
∆2+

√
1.37

0.37
√
t− 1

∆1

√
∆2 +

1

t
∆1∆2 and

|N2(N1(a)) ∩N2(N1(b))| ≤ ∆1 + ∆2 +
√

1.37(t− 1)∆1

√
∆1+

√
1.37

0.37
√
t− 1

∆2

√
∆1 +

1

t
∆1∆2.

Proof. By symmetry we only need to prove the first bound. Our approach to this is
to partition N1(N2(a))∩N1(N2(b)) into a number of subsets, each of which we bound
separately. To assist the reader, we have provided a depiction of our partition scheme
in Figure 2.7.

Before starting the main argument, we first need to prune the neighbourhood
N1(N2(a)) of three types of relatively small subsets.

• First, since G2 is C4-free, |N2(a) ∩N2(b)| ≤ 1, so

|N1(N2(a) ∩N2(b))| ≤ ∆1. (2.21)

Thus we can restrict our attention to |N1(N2(a) \ N2(b)) ∩ N1(N2(b))|. The
reason for this technical reduction is so that we can work with the disjoint sets
N2(a) \N2(b) and N2(b).
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b

x1 x2 x...Rt(k)

Dt(x
∗
1) Dt(x

∗
2) Dt(x

∗
3) Dt(x

∗
...)

Dt

At(x1) x∗1 x∗2 x∗3 x∗...

a

N1(N2(a) ∩ N2(b))

Qt

N1(N2(a)) ∪ N2(b)

Remainder terms

Figure 2.7: A depiction of the vertex sets relevant to the proof of Claim 2.5.7.
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• Second, define

Qt := {y ∈ N1(N2(a)) | |N1(y) ∩N2(a)| ≥ t}.

So Qt is the set of vertices in N1(N2(a)) that are in the blue neighbourhoods
of at least t different red neighbours of a. We estimate |Qt| separately, because
its elements facilitate a large amount of overlap among the blue neighbourhoods
of (at most t different) vertices in N2(a), while still not violating the absence of
large cycles. By an overcounting argument,

|Qt| ≤
∑

x∈N2(a)

∑
y∈N1(x)

1{y∈Qt}
t

≤ 1

t

∑
x∈N2(a)

∑
y∈N1(x)

1 ≤ ∆1∆2

t
. (2.22)

• Third, we estimate |N1(N2(a)) ∩ N2(b)| separately, because later we wish to be
able to assume that there are no blue edges between N2(a) and N2(b). We have
that

|N1(N2(a)) ∩N2(b)| ≤ |N2(b)| ≤ ∆2. (2.23)

Having established the estimates (2.21), (2.22) and (2.23) separately, we are left
with estimating |N1(N2(b)) ∩ (N1(N2(a) \ N2(b)) \ (Qt ∪ N2(b)))|, and we do so with
Lemma 2.2.3.

For brevity, define Dt := N1(N2(a) \N2(b)) \ (Qt ∪N2(b)) and Dt(x
∗) := N1(x∗) \

(Qt∪N2(b)) for any vertex x∗ ∈ N2(a)\N2(b). Note that Dt =
⋃
x∗∈N2(a)\N2(b)Dt(x

∗)
and our goal now is to bound |N1(N2(b)) ∩Dt|.

Define k :=
√

1.37(t− 1)∆2 and let

Rt(k) := {x ∈ N2(b) | |N1(x) ∩Dt| > k} .

So Rt(k) is the set of red neighbours of b that each have ‘large’ blue neighbourhoods
intersecting Dt. We want to show that |Rt(k)| is small, so without loss of generality
we may assume that k is small enough to ensure that Rt(k) 6= Ø.

For each x ∈ N2(b), define the set

At(x) := {x∗ ∈ N2(a) \N2(b) | N1(x) ∩Dt(x
∗) 6= Ø} .

For the moment, let us assume that we have established the following two properties:

|At(x)| > k for all x ∈ Rt(k); (2.24)

|At(x1) ∩At(x2)| ≤ t− 1 for all distinct x1, x2 ∈ N2(b). (2.25)

We prove these two properties later, but let us first show how from these both a bound
on |Rt(k)| and then the desired result follow.

Note that we have chosen k such that k2 = 1.37(t− 1)∆2 > (t− 1)|N2(a) \N2(b)|.
By this choice and the inequalities in (2.24) and (2.25), we may apply Lemma 2.2.3
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with N = |Rt(k)|, X = N2(a) \ N2(b), the parameters t and k, and the collection
(At(x))x∈Rt(k) of subsets of X, yielding the following bound:

|Rt(k)| ≤ |N2(a) \N2(b)| · k − (t− 1)

k2 − (t− 1)|N2(a) \N2(b)|

≤ ∆2 ·
√

1.37(t− 1)∆2

1.37(t− 1)∆2 − (t− 1)∆2
=

√
1.37

0.37

√
∆2

t− 1
.

We can then bound the main term as follows:

|N1(N2(b)) ∩Dt| ≤ |{x ∈ N2(b) | |N1(x) ∩Dt| ≤ k}| · k + |Rt(k)|∆1

≤ ∆2k + |Rt(k)|∆1 ≤ ∆2

√
1.37(t− 1)∆2 +

√
1.37

0.37

√
∆2

t− 1
∆1

=

√
1.37

0.37
√
t− 1

∆1

√
∆2 +

√
1.37(t− 1)∆2

√
∆2. (2.26)

Combining inequalities (2.21), (2.22), (2.23) and (2.26), we obtain

|N1(N2(b)) ∩N1(N2(a))|
≤ |N1(N2(b)) ∩Dt|+ |N1(N2(a) ∩N2(b))|+ |N1(N2(b)) ∩Qt|+ |N1(N2(b)) ∩N2(b)|

≤
√

1.37

0.37
√
t− 1

∆1

√
∆2 +

√
1.37(t− 1)∆2

√
∆2 + ∆1 +

1

t
∆1∆2 + ∆2,

which is the desired result.
So to complete the proof, it only remains to show the two properties (2.24) and (2.25).
For (2.24), since G1 has no 4-cycle, it holds that |N1(x) ∩ Dt(x

∗)| ≤ 1 for each
x ∈ N2(b) and x∗ ∈ N2(a) \ N2(b). So for a fixed x ∈ Rt(k) ⊆ N2(b), each x∗ ∈
N2(a) \N2(b) contributes at most 1 to |N1(x) ∩Dt|. This proves (2.24).

To prove (2.25), suppose for a contradiction that there exist distinct x1, x2 ∈ N2(b)
such that |At(x1)∩At(x2)| ≥ t. Then there are at least t different vertices x∗1, . . . , x

∗
t ∈

N2(a)\N2(b), and there exist vertices y11 ∈ Dt(x
∗
1)∩N1(x1), . . . , yt1 ∈ Dt(x

∗
t )∩N1(x1)

as well as vertices y12 ∈ Dt(x
∗
1)∩N1(x2), . . . , yt2 ∈ Dt(x

∗
t )∩N1(x2). Due to the separate

estimate (2.22), we were allowed to exclude elements of the set Qt in our choice of the
setsDt(·), and so the vertices y11, . . . yt1 are not all equal. Recall that we assumed t ≥ 2.
Without loss of generality, we may assume that y11 6= y21. Note though that some of
the vertices y11, y21, y12, y22 may well be equal. Due to the separate estimate (2.23),
we were also allowed to exclude elements of N2(b) in our choice of Dt(·), and so x1x

∗
1,

x1x
∗
2, x2x

∗
1, x2x

∗
2 are not blue edges. Therefore {x1, x2, x

∗
1, x
∗
2}∩{y11, y12, y21, y22} = Ø.

It can be shown that the induced subgraph G1[{x1, x2, x
∗
1, x
∗
2, y11, y12, y21, y22}] con-

tains a 4-, 6- or 8-cycle, which is a contradiction. To wit, the case analysis proceeds as
follows. See Figure 2.8 for a pictorial synopsis. Since y11 6= y21, there are four cases
for the possible coincidences among y11, y21, y12, y22:

1. The vertices are all distinct. Then y11x1y21x
∗
2y22x2y12x

∗
1 is a blue 8-cycle.

2. Exactly one pair of the vertices coincides. Since y11 6= y21, there are five subcases:
y11 = y12, y11 = y22, y12 = y21, y12 = y22, or y21 = y22. We can consider each
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b
x1 x2

y11
y12 y21

y22

x∗1 x∗2a

Figure 2.8: The cases analysed in Claim 2.5.7. We know y11 6= y21, but some of the
vertices y11, y12, y21, y22 may coincide. As shown here, in each case there is a blue
4-, 6- or 8-cycle. In reading order, the depicted cases are: (a) all are distinct, (b)–(f)
exactly one pair of vertices coincides, (g)–(h) a triple of vertices coincides, (i)–(j) two
pairs of vertices coincide.

subcase individually (as in Figure 2.8), or we can also notice some symmetries
by a relabelling of the vertices x1, x2, x

∗
1, x
∗
2, y11, y12, y21, y22. The three subcases

y11 = y12, y12 = y22 and y21 = y22 are symmetric, and in the first of these
subcases y11x1y21x

∗
2y22x2 is a blue 6-cycle. The two remaining subcases y11 = y22

and y12 = y21 are symmetric, and in the first of these y11x1y21x
∗
2 is a blue 4-cycle.

3. A triple of the vertices coincides. Since y11 6= y21, there are two subcases: y12 =
y21 = y22 or y11 = y12 = y22. In the first of these y11x1y12x

∗
1 is a blue 4-cycle,

while in the second y11x1y21x
∗
2 is a blue 4-cycle.

4. Two pairs of the vertices coincide. Since y11 6= y21, there are two subcases:
y11 = y12, y21 = y22 or y11 = y22, y12 = y21. In both of these y11x1y21x2 is a blue
4-cycle.

We in fact use a weaker but handier version of Claim 2.5.7. For each t ≥ 2, define

Ct :=

√
1.37

0.37
√
t− 1

+
√

1.37(t− 1).

Claim 2.5.8. For each t ≥ 2, we have that ∆1 +∆2 +Ct∆1

√
∆1 +∆1∆2/t is an upper

bound for each of the following quantities: |N1(N2(u)) ∩ N1(N2(v))|, |N2(N1(u)) ∩
N2(N1(v))|, |A(v)|, |B(v)|, |A(u)|, |B(u)|.
Proof. For the first two quantities, apply Claim 2.5.7 with a = v and b = u and note
that ∆1 ≥ ∆2, by assumption.

For the last quantity, note first that |A∗(u)| ≥ 1 by Claim 2.5.6. By Claim 2.5.5,
there exists a ∈ A∗(u) (not equal to u) such that B(u) ⊆ N1(N2(a))∩N1(N2(u)). The
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bound follows from Claim 2.5.7 with a and b = u and the assumption that ∆1 ≥ ∆2.
The proof for the remaining quantities is the same.

2.5.3 Putting the neighbourhood bounds together

We are ready to complete the proof of Theorem 2.5.3.
By Claim 2.5.4 we have that

[n] ⊆ N1(N2(u)) ∪A∗(u) ∪N2(u),

[n] ⊆ N1(N2(v)) ∪A∗(v) ∪N2(v), and

[n] ⊆ N2(N1(v)) ∪B∗(v) ∪N1(v).

So it follows (also using the definitions of A∗(v), A(v), A∗(u), B∗(v), A(u), B(v)) that

n ≤ |N1(N2(u))|+ |A∗(u)|+ |N2(u)|
≤ (|N1(N2(u)) ∩N1(N2(v))|+ |N1(N2(u)) ∩A∗(v)|+ |N1(N2(u)) ∩N2(v)|)+

(|A∗(u) ∩N2(N1(v))|+ |A∗(u) ∩B∗(v)|+ |A∗(u) ∩N1(v)|) + |N2(u)|
≤ (|N1(N2(u)) ∩N1(N2(v))|+ |A(v)|+ |N1(v)|+ |N2(v)|)+

(|N2(N1(u)) ∩N2(N1(v))|+ |A(u) ∩B(v)|+ |N1(u)|+ |N2(v)|+ |N1(v)|) + |N2(u)|
≤ |N1(N2(u)) ∩N1(N2(v))|+ |N2(N1(u)) ∩N2(N1(v))|+ |A(v)|+ |B(v)|+ 3(∆1 + ∆2)

≤ 4Ct∆1

√
∆1 + 4∆1∆2/t+ 7(∆1 + ∆2), (2.27)

where to derive the last line we applied Claim 2.5.8 for some t ≥ 2. This contradicts
our assumption on n.

2.6 A near-packing interpolation result

A near-packing of degree d of a blue graph G1 and a red graph G2 is a pair of injective
mappings (labellings) of their vertex sets into {1, . . . , n} such that the graph induced
by the intersection of their edge sets (the purple edges) has maximum degree d. Note
that G1 and G2 pack iff they admit a near-packing of degree 0.

In 2000, Eaton [35] gave a short and elegant double-counting proof of a near-packing
result that (deceivingly) appears to be close to resolving the BEC-conjecture. She
proved that if two graphs G1, G2 satisfy the BEC-condition, then they admit a degree
≤ 1 near-packing. Upon inspection of the proof it turns out that she actually establishes
something slightly stronger. Indeed, she shows that for any labelling of G1 and G2

that is not a degree ≤ 1 near-packing, there exist two vertices such that swapping
their red labels results in another pair of labellings with fewer purple edges. Thus the
following theorem holds. (For completeness, we include the proof, in the language of
blue–red–links and red–blue–links.)

Theorem 2.6.1 (Eaton [35]). Let G1 and G2 be graphs that satisfy

(∆1 + 1)(∆2 + 1) ≤ n+ 1.



40 CHAPTER 2. ON THE BOLLOBÁS–ELDRIDGE–CATLIN CONJECTURE

Then for any pair of labellings of G1 and G2 with fewest purple edges, the graph induced
by the purple edges has maximum degree at most 1. Moreover, the number of purple
edges is at most n

2 + 1−∆1 −∆2.

Proof. Fix a pair of labellings of G1 and G2 with fewest purple edges and suppose
that the graph induced by the purple edges has maximum degree d ≥ 2. We will
show that then there exist two vertices i, j ∈ V (G2) such that a (i, j)−swap of the red
labels results in a pair of labellings with fewer purple edges; contradiction. For any
vertex i, let degp(i) denote the degree of i in the graph induced by the purple edges.
From now on, let j be a fixed vertex of maximal purple degree d and let D denote
the set of purple neighbours of j. For any other vertex i, we define Links(i, j) :=
# {red–blue–links from i to j}+ # {blue–red–links from i to j}.

Case 1. If i /∈ D, i 6= j then

degp(i) + degp(j) ≤ Links(i, j).

Indeed, if not then an (i, j)−swap of the red labels would eliminate degp(i)+degp(j)
purple edges, while creating Links(i, j) new purple edges, thus effectively reducing the
number of purple edges; contradiction.

Case 2. If i ∈ D then

degp(i) + degp(j)− 2 ≤ Links(i, j).

This is again because an (i, j)−swap would reduce the number of purple edges. The
extra factor 2 arises because an (i, j)−swap does not eliminate the purple edge ij.

Summing the inequalities over all i 6= j yields

(n− 1) · degp(j)− 2d+
∑
i 6=j

degp(i) ≤
∑
i 6=j

Links(i, j). (2.28)

Since degp(j) = d and
∑
i∈D degp(i) ≥ d and

∑
i 6=j Links(i, j) ≤ 2∆1∆2 − 2d, it

follows that
n · d+

∑
i/∈D

degp(i) ≤ 2∆1∆2.

This leads to a contradiction if d ≥ 2, because it implies that n ≤ ∆1∆2. Therefore we
must have d ≤ 1, as desired.

It remains to upperbound the number of purple edges, which equals
1
2

(∑
i∈V (G2) degp(i)

)
= 1

2

(
1 +

∑
i6=j degp(i)

)
. By equation (2.28), this is upper-

bounded by
1
2

(
1− (n− 3)d+

∑
i 6=j Links(i, j)

)
≤ 1

2 (1− (n− 3) + 2∆1∆2 − 2) = 1+∆1∆2− n
2 ≤

n
2 + 1−∆1 −∆2.

On the other hand, Sauer and Spencer [94] already showed in 1978 that 2∆1∆2 < n
is sufficient for G1 and G2 to pack. Using the terminology in this chapter, their
argument boils down to the fact that in a minimal counterexample, there is a unique
purple edge uv such that for every vertex x 6= v, there is a link between u and x. Indeed,
this implies the contradictory upperbound n ≤ |N1(N2(u)) ∪N2(N1(u))| ≤ 2∆1∆2.
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To conclude this section, we wish to provide a modest new result that interpolates
‘linearly’ between the bounds of Eaton and Sauer and Spencer.

Lemma 2.6.2 (Interpolation). Let q ∈ {0, 1, . . . , bn/2 + 1−∆1 −∆2c}. Let G1 be a
blue graph with maximum degree ∆1 and let G2 be a red graph with maximum degree
∆2. Supose

∆1∆2 <
n
2 + q.

Then there exists a degree ≤ 1 near-packing of G1 and G2 with ≤ q purple edges.

Proof. Suppose the theorem does not hold, then there exists a nonnegative integer
q ≤ bn/2+1−∆1−∆2c and a critical pair of graphs (G1, G2) such that ∆1∆2 <

n
2 +q,

but every degree 1 near-packing of G1 and G2 (if it exists) has ≥ q + 1 purple edges.
Now fix a near-packing of G1 and G2 with the minimal possible number z of purple
edges. Noting that ∆1∆2 <

n
2 + q implies (∆1 + 1)(∆2 + 1) ≤ n + 1, it follows from

Theorem 2.6.1 that it is a degree ≤ 1 near-packing. Therefore z ≥ q + 1.
Let u1, u2, . . . u2z denote the 2z distinct vertices that are incident to the z purple

edges. Let u2 be the vertex that is incident to the same purple edge as u1.
Note that for every i 6= 2, the number of blue–red-links from u1 to ui plus the

number of red–blue-links from u1 to ui must be at least 2. For i = 1 this follows from
the fact that u1u2 is a purple edge. For i /∈ {1, 2} it holds because otherwise it would
be possible to swap the red labels of u1 and ui, destroying the two different purple
edges incident to u1 respectively ui while creating at most one new purple edge. This
reduces the number of purple edges, contradicting the minimality of z.

Let C(u1) := {x ∈ V | u1 and x are connected by at least two different links}.
It follows that |C(u1)| ≥ 2z − 1 ≥ 2q + 1. By a straightforward analogue of Claim

2.3.1, every vertex except possibly u2 is connected to u1 by at least one link. Therefore,
we can now estimate:

n ≤ | {u2} |+ |N1(N2(u1))|+ |N2(N1(u1))| − |C(u1)| ≤ 2∆1∆2 − 2q.

So we obtain the contradictory inequality

∆1∆2 ≥
n

2
+ q.





Chapter 3

Colouring the square of a
claw-free graph

Let G be a claw-free graph on n vertices with clique number ω, and consider the
chromatic number χ(G2) of the square G2 of G. Writing χ′s(d) for the supremum
of χ(L2) over the line graphs L of simple graphs of maximum degree at most d, we
prove that χ(G2) ≤ χ′s(ω) for ω ∈ {3, 4}. For ω = 3, this implies the sharp bound
χ(G2) ≤ 10. For ω = 4, this implies χ(G2) ≤ 22, which is within 2 of the conjectured
best bound. This work is motivated by a strengthened form of a conjecture of Erdős
and Nešetřil.

3.1 Introduction

Let G be a claw-free graph, that is, a graph without the complete bipartite graph
K1,3 as an induced subgraph. We consider the square G2 of G, formed from G by the
addition of edges between those pairs of vertices connected by some two-edge path in
G. We seek to optimise the chromatic number χ(G2) of G2 with respect to the clique
number ω(G). We focus on claw-free graphs G having small ω(G).

The second author with de Joannis de Verclos and Pastor [63] recently conjectured
the following. As the class of claw-free graphs is richer than the class of line graphs
(cf. e.g. [27]), this is a significant strengthening of a notorious conjecture of Erdős and
Nešetřil (cf. [39]).

Conjecture 3.1.1 (de Joannis de Verclos, Kang and Pastor [63]). For any claw-free
graph G, χ(G2) ≤ 1

4 (5ω(G)2 − 2ω(G) + 1) if ω(G) is odd, and χ(G2) ≤ 5
4ω(G)2

otherwise.

If true, this would be sharp by the consideration of a suitable blow-up of a five-
vertex cycle and taking G to be its line graph. The conjecture of Erdős and Nešetřil is
the special case in Conjecture 3.1.1 of G the line graph of a (simple) graph. To support
the more general assertion and at the same time extend a notable result of Molloy and
Reed [86], it was proved in [63] that there is an absolute constant ε > 0 such that
χ(G2) ≤ (2− ε)ω(G)2 for any claw-free graph G.

43
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In this note, our primary goal is to supply additional evidence for Conjecture 3.1.1
when ω(G) is small. We affirm it for ω(G) = 3 and come to within 2 of the conjectured
value when ω(G) = 4. Note that Conjecture 3.1.1 is trivially true when ω(G) ≤ 2.

We write χ′s(ω) for the supremum of χ(L2) over the line graphs L of all simple
graphs of maximum degree ω. Moreover, χ′s,m(ω) denotes the supremum of χ(L2) over
the line graphs L of all multigraphs of maximum degree ω.

Theorem 3.1.2. Let G be a claw-free graph.

1. If ω(G) = 3, then χ(G2) ≤ 10.

2. If ω(G) = 4, then χ(G2) ≤ 22; moreover, χ(G2) ≤ χ′s(4).

Note that the suitable blown-up five-vertex cycles mentioned earlier certify that
Theorem 3.1.21 is sharp and that χ′s(4) ≥ 20. Theorem 3.1.2 extends, in 1, a result
independently of Andersen [7] and Horák, Qing and Trotter [61], and, in 2, a result of
Cranston [31]. These earlier results proved the unconditional bounds of Theorem 3.1.2
in the special case of G the line graph L(F ) of some (multi)graph F .

It is worth contrasting the work here and in [63] with the extremal study of χ(G)
in terms of ω(G) where in general the situation for claw-free G is markedly different
from and more complex than that for G the line graph of some (multi)graph, cf. [29].

In fact, for both ω(G) ∈ {3, 4} we show that Conjecture 3.1.1 reduces to the special
case of G the line graph of a simple graph. The techniques we use for bounding χ(G2)
are purely combinatorial. They also apply when ω(G) > 4 (as we describe just below),
but seem to be most useful when ω(G) is small. It is natural that different methods
are applicable in the small ω(G) versus large ω(G) cases, especially since this is also
true of progress to date in the Erdős–Nešetřil conjecture.

Naturally, one could ask, for what (small) values of ω(G) does it remain true that
Conjecture 3.1.1 is “equivalent” to the original conjecture of Erdős and Nešetřil? In
light of the work in [63], it is conceivable that structural methods such as in [27, 29]
will be helpful for this question. As an extremely modest step in this direction, we
have shown the following reduction for ω(G) ≥ 5.

Theorem 3.1.3. Fix ω ≥ 5. Then χ(G2) ≤ max{χ′s(ω), 2ω(ω − 1) − 3} for every
claw-free graph G with ω(G) = ω.

To be transparent, let us compare this with one of the results from [63].

Theorem 3.1.4 (de Joannis de Verclos, Kang and Pastor [63]). Fix ω ≥ 5. Then
χ(G2) ≤ max{χ′s,m(ω), 31} for every claw-free graph G with ω(G) = ω.

Combined with our Theorem 3.1.2 this implies that, in terms of reducing Conjec-
ture 3.1.1 to those G which are multigraph line graphs, only the case ω(G) = 5 remains
with margin 2.

We remark that, for the conjecture of Erdős and Nešetřil itself when ω(G) ∈ {5, 6, 7}
there has been little progress: respectively, a trivial bound based on the maximum
degree of G2 yields 41, 61, 85, Cranston [31] speculates that 37, 56, 79 are within
reach, and the conjectured values are 29, 45, 58.

It gives insight to notice that the claw-free graphs with clique number at most ω
are precisely those graphs each of whose neighbourhoods induces a subgraph with no
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clique of size ω − 1 and no stable set of size 3. So a good understanding of the graphs
that certify small off-diagonal Ramsey numbers can be useful for this class of problems.

Organisation: In the next section and Section 3.3, we introduce some basic tools
we use. In Section 3.4, we treat the case ω(G) = 3 and prove Theorem 3.1.21. In
Section 3.5, we treat the case ω(G) = 4 and prove Theorem 3.1.22. In Section 3.6,
we briefly consider the extension of our methods to the case ω(G) ≥ 5 and prove
Theorem 3.1.3.

3.2 Notation and preliminaries

We use standard graph theoretic notation. For instance, if v is a vertex of a graph G,
then the neighbourhood of v is denoted by NG(v), and its degree by degG(v). For a
subset S of vertices, we denote the neighbourhood of S by NG(S) and this is always
assumed to be open, i.e. NG(S) = ∪s∈SNG(s)\S. We omit the subscripts if this causes
no confusion. We frequently make use of the following simple lemmas.

Recall that the Ramsey number R(k, `) is the minimum n such that in any graph
on n vertices there is guaranteed to be a clique of k vertices or a stable set of ` vertices.

Lemma 3.2.1. Let G = (V,E) be a claw-free graph. For any v ∈ V , the induced
subgraph G[N(v)] contains no clique of ω(G) vertices and no stable set of 3 vertices.
In particular, deg(v) < R(ω(G), 3).

Proof. If not, then with v there is either a clique of ω(G) + 1 vertices or a claw.

Lemma 3.2.2. Let G = (V,E) be a claw-free graph. For any v, w ∈ V and vw ∈ E,
any two distinct x, y ∈ N(w) \ ({v}∪N(v)) are adjacent. In particular, |N(w) \ ({v}∪
N(v))| ≤ ω(G)− 1.

Proof. If not, then v, w, x, y form a claw. So {w}∪N(w)\ ({v}∪N(v)) is a clique.

It is not required next that x, y ∈ N(v), but it is the typical context in which it is
used.

Lemma 3.2.3. Let G = (V,E) be a claw-free graph. For any v ∈ V and w ∈ N(v),
if N(v) ∩N(w) contains two non-adjacent vertices x and y, then for any z ∈ N(w) \
({v} ∪N(v)), either xz ∈ E or yz ∈ E.

Proof. If not, then w, x, y, z form a claw.

3.3 A greedy procedure

In this section, we describe a general inductive procedure to use vertices of small square
degree to colour squares in a class of graphs. This slightly refines a procedure in [63]
so that it is suitable for our specific purposes.
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Lemma 3.3.1. Let K be a non-negative integer. Suppose C1 and C2 are graph classes
such that C1 is closed under vertex deletion and every graph G ∈ C2 satisfies χ(G2) ≤
K+1. Furthermore, suppose there exists K ′ ≤ K such that every graph G ∈ C1 satisfies
one of the following:

1. G belongs to C2;

2. there is a vertex v ∈ V (G) such that degG2(v) ≤ K ′, there is a vertex x∗ ∈ NG(v)
with degG2(x∗) ≤ K ′ + 1 and the set of all vertices x ∈ NG(v) with degG2(x) >
K ′ + 2 induces a clique in (G \ v)2; or

3. there is a vertex v ∈ V (G) such that degG2(v) ≤ K ′ and the set of all vertices
x ∈ NG(v) with degG2(x) > K ′ + 1 induces a clique in (G \ v)2.

For any G ∈ C1, χ(G2) ≤ K + 1.

Proof. We proceed by induction on the number of vertices. Since K is non-negative
and the singleton graph is in C1, the base case of the induction holds. Let G be a graph
in C1 with at least two vertices and suppose that the claim holds for any graph of C1
with fewer vertices than G has. If G ∈ C2, then we are done by the assumption on C2.
So it only remains to consider the second and third possibility.

We now prove the bound under assumption of case 2. Let v be the vertex guaranteed
in this case and write B for the set of vertices x ∈ NG(v) with degG2(x) > K ′ + 2 and
S = N(v) \B. Since C1 is closed under vertex deletion, by induction there is a proper
colouring ϕ of (G \ v)2 with at most K + 1 colours. Since B is a clique, all elements
in B are assigned different colours under ϕ. From ϕ, we will now obtain a new proper
(K+ 1)−colouring ϕ′ of (G\v)2 such that all elements of NG(v) have different colours.

First we uncolour all vertices in S. We then wish to recolour them with pairwise
distinct colours as follows. Given s ∈ S, we say a colour in {1, . . . ,K + 1} is available to
s if it is distinct from any colour assigned by ϕ to the vertices in NG2(s)\({v}∪S). Since
degG2(s) ≤ K ′+2 ≤ K+2 and {v}∪S \{s} ⊆ NG2(s), the number of colours available
to s is at least K+ 1− (degG2(s)−| {v}∪S \ {s}|) ≤ K+ 1− ((K+ 2)−|S|) = |S|− 1.
Furthermore, since x∗ ∈ S and degG2(x∗) ≤ K ′ + 1 ≤ K + 1, the number of colours
available to x∗ is at least |S|. Since the complete graph on |S| vertices is (greedily) list
colourable for any list assignment with |S| − 1 lists of size |S| − 1 and one list of size
|S|, it follows that we can recolour the vertices of S with pairwise distinct available
colours.

This new colouring ϕ′ is a proper (K+1)-colouring of (G\v)2 such that all elements
in NG(v) have different colours. Since degG2(v) ≤ K ′ ≤ K, there is at least one colour
not appearing in NG2(v) that we can assign to v so that together with ϕ′ we obtain a
proper (K + 1)-colouring of G2.

The proof under assumption 3 is nearly the same as under 2. Defining B for the set
of vertices x ∈ NG(v) with degG2(x) > K ′ + 1 and S = N(v)\B, we obtain that every
s ∈ S has |S| available colours. This allows us to complete the colouring as before.

3.4 Clique number three

In this section, we prove Theorem 3.1.21. We actually prove the following result.
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Theorem 3.4.1. Let G = (V,E) be a connected claw-free graph with ω(G) = 3. Then
one of the following is true:

1. G is the icosahedron;

2. G is the line graph L(F ) of a 3-regular graph F ; or

3. there exists v ∈ V with degG2(v) ≤ 9 such that degG2(x) ≤ 11 for all x ∈ NG(v).
Furthermore, either there exists x∗ ∈ NG(v) with degG2(x∗) ≤ 10, or NG(v)
induces a clique in (G\v)2.

Let us first see how this easily implies Theorem 3.1.21.

Proof of Theorem 3.1.21. Let C1 be the class of claw-free graphs G with ω(G) ≤ 3.
Clearly C1 contains the singleton graph and is closed under vertex deletion.

Let C2 be the class of graphs formed by taking all claw-free graphs G with ω(G) ≤ 2,
the icosahedron, and the line graphs L(F ) of all 3-regular graphs F . If G is a claw-free
graph with ω(G) ≤ 2, then χ(G2) ≤ 5. If G is the icosahedron, then χ(G2) ≤ 6 is
certified by giving every pair of antipodal points the same colour. If G is the line
graph of a 3-regular graph, then χ(G2) ≤ 10 by the strong edge-colouring result due,
independently, to Andersen [7] and to Horák, Qing and Trotter [61].

Theorem 3.4.1 certifies that we can apply Lemma 3.3.1 with K = K ′ = 9.

Proof of Theorem 3.4.1. First we show that either case 1 or 2 applies, or that there
exists a vertex v ∈ V with degG2(v) ≤ 9. At the end, we show that, for all such v, it
also holds that degG2(x) ≤ 11 for all x ∈ NG(v) and that furthermore these vertices
either induce a clique in (G\v)2, or contain a vertex x∗ with degG2(x∗) at most 10.

First note that the maximum degree ∆(G) of G is at most 5. This follows from
Lemma 3.2.1 and the fact that R(3, 3) = 6. Moreover, note that, for any v ∈ V with
deg(v) = 5, G[N(v)] must be a 5-cycle by Lemma 3.2.1.

For v ∈ V with deg(v) ≤ 2, we have degG2(v) ≤ 2 + 2 · 2 = 6 by Lemma 3.2.2. For
v ∈ V with deg(v) = 3, we have degG2(v) ≤ 3 + 3 · 2 = 9 by Lemma 3.2.2. So in terms
of proving the existence of a vertex v with degG2(v) ≤ 9, we can assume hereafter that
the minimum degree of G satisfies δ(G) ≥ 4.

For v ∈ V with deg(v) = 4, we call v good if the subgraph G[N(v)] induced by
N(v) is not the disjoint union of two edges. Assume for the moment that G contains
no good vertex.

If δ(G) = ∆(G) = 4, then every neighbourhood induces the disjoint union of two
cliques (each of exactly two vertices). Recall that a graph is the line graph of a graph if
its edges can be partitioned into maximal cliques so that no vertex belongs to more than
two such cliques and additionally, no two vertices are both in the same two cliques. We
can designate the maximal cliques as follows: for v ∈ V and a clique C that is maximal
in N(v), designate v ∪ C as a maximal clique for the requisite edge partition. Indeed,
every edge v1v2 is designated as part of one of the cliques, either from the perspective of
v1 or of v2. Moreover, the clique to which v1v2 is designated does not differ depending
on the endpoint from which the perspective is taken, since every neighbourhood induces
the disjoint union of two cliques. As each of the designated cliques has exactly three
vertices, it follows that G is the line graph L(F ) of a 3-regular graph F .
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If, on the other hand, there exists v ∈ V with deg(v) = 5, then consider x ∈ N(v).
Since G[N(v)] is a 5-cycle, x has three neighbours y1, v, y3 that induce a 3-vertex path
y1vy3. This means G[N(x)] is not the union of two cliques. By our assumption that
no vertex is good, it follows that x has degree 5. So G is the icosahedron, the unique
connected graph in which every neighbourhood induces a 5-cycle. (Uniqueness can be
easily seen by constructing the graph up to distance 2 from v in the only possible way
respecting induced 5-cycles, and then noting that the vertices at distance 2 from v
induce a 5-cycle and that they all need to be adjacent to a 12th and final vertex.)

From now on, let v ∈ V be a good vertex. We next show that |N(N(v)) \ {v}| ≤ 5
(which implies degG2(v) ≤ 9).

Since G[N(v)] has no stable set of three vertices and v is good, G[N(v)] has at
least three edges. Moreover, since G[N(v)] has no clique of three vertices, we can
write N(v) = {x1, x2, x3, x4} such that x1x2, x2x3, x3x4 ∈ E and x1x3, x2x4 /∈ E. By
Lemma 3.2.2, both x1 and x4 have at most 2 neighbours outside {v} ∪ N(v). So it
suffices to show that {x2, x3} cannot have two neighbours outside {v}∪N(v) which are
not neighbours of {x1, x4}. By contradiction, let p, q be these vertices. Without loss
of generality, p is a neighbour of x2. Then p is ajdacent to x3, for otherwise x1x2x3p
would be a claw. Similarly, q is adjacent to both x2 and x3. But then pq is an edge
(otherwise x1pqx2 would be a claw), so that x2x3pq is a K4. Contradiction. This
concludes the proof that there exists a vertex v with degG2(v) ≤ 9.

From now on, let v be one of the vertices for which we showed above that degG2(v) ≤
9. In particular, if v has degree 4 then it is a good vertex.

Let us call a vertex x extremely bad if degG2(x) ≥ 12. We already observed that no
vertex x with deg(x) ≤ 3 is extremely bad. If deg(x) = 5, then N(x) induces a 5-cycle
and so by Lemma 3.2.3 every vertex in N(N(x)) \ {x} has at least two neighbours in
N(x), so |N(N(x)) \ {x}| ≤ 5. So a vertex x can only be very bad if deg(x) = 4 and
it is not good. In particular, by Lemma 3.2.2, not only does the neighbourhood of x
induce a disjoint union of two edges, but also the same is true for every neighbour of
x. This implies that N(v) does not contain an extremely bad vertex.

Let us call a vertex x very bad if degG2(x) = 11. We are done if there exists
x∗ ∈ NG(v) with degG2(x∗) ≤ 10. So we may assume from now on that all vertices in
NG(v) are very bad, and we need to show that they induce a clique in (G\v)2. Assume
for a contradiction that they do not. Since the neighbourhood of a degree 5 vertex
induces a 5-cycle, of which the square is a clique, we may assume that deg(v) ≤ 4.
If deg(v) = 3, then there are x1, x2, x3 ∈ N(v) such that x1x2, x2x3 /∈ E(G), so
degG(x2) ≤ 3, so degG2(x2) ≤ 9, contradicting that x2 is very bad. Similarly if
deg(v) ≤ 2. Thus we have reduced to the case that v is a good vertex (of degree 4). As
argued before, we can then write N(v) = {x1, x2, x3, x4} such that x1x2, x2x3, x3x4 ∈ E
and x1x3, x2x4 /∈ E. Since N(v) does not induce a clique in (G \ v)2, it follows that
also x1x4 /∈ (E). Therefore deg2

G(x1) ≤ 10, contradicting that x1 is very bad. This
completes the proof.

3.5 Clique number four

The proof of Theorem 3.4.1 suggests the following rougher but more general phe-
nomenon. This follows from Lemmas 3.2.2 and 3.2.3 together with a double-counting
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argument.
For G = (V,E) and v ∈ V , we define the following subset of N(v):

Z(v) := {w ∈ N(v) | ∃x, y ∈ N(v) such that xw,wy ∈ E and xy /∈ E}.

Lemma 3.5.1. Let G = (V,E) be a claw-free graph. For any v ∈ V ,

|N(N(v)) \ {v}| ≤
∑

w∈N(v)\Z(v)

|N(w) \ ({v} ∪N(v))|+ 1

2

∑
w∈Z(v)

|N(w) \ ({v} ∪N(v))|

≤
(

deg(v)− 1

2
|Z(v)|

)
(ω(G)− 1).

Proof. Let w ∈ Z(v). By Lemma 3.2.3, any x ∈ N(w) \ ({v} ∪N(v)) also satisfies
x ∈ N(y) \ ({v} ∪N(v)) for some y ∈ N(v) \ {w}. So

|N(N(v)) \ {v} | =
∑

w∈N(v)

∑
x∈N(w)\({v}∪N(v))

1

|{u ∈ N(v) | x ∈ N(u)}|

is at most
∑
w∈N(v)\Z(v) |N(w)\ ({v}∪N(v))|+ 1

2

∑
w∈Z(v) |N(w)\ ({v}∪N(v))|. Now

apply Lemma 3.2.2.

This has the following immediate consequence.

Corollary 3.5.2. Let G = (V,E) be a claw-free graph. For any v ∈ V with deg(v) ≥
2ω(G)− 1, we have Z(v) = N(v) and therefore

|N(N(v)) \ {v}| ≤ 1

2

∑
w∈N(v)

|N(w) \ ({v} ∪N(v))| ≤ 1

2
deg(v)(ω(G)− 1).

Proof. Let w ∈ N(v) and consider NG[N(v)](w). By Lemma 3.2.2, degG[N(v)](w) ≥
deg(v)− (ω(G)− 1)− 1 ≥ ω(G)− 1. Then NG[N(v)](w) contains a pair of non-adjacent
vertices, or else {v, w}∪NG[N(v)](w) is a clique of ω(G)+1 vertices. As w was arbitrary,
we have just shown that Z(v) = N(v). So the result follows from Lemma 3.5.1.

We now prove the following result. Similarly to what we saw if ω(G) = 3, this
implies for any claw-free G with ω(G) = 4 that χ(G2) ≤ 22 by Lemma 3.3.1 with
K = 21 and K ′ = 19, due to a result of Cranston [31]. Furthermore, since χ′s(4) ≥ 20,
we may make the choice K = χ′s(4)−1 and K ′ = 19 to obtain Theorem 3.1.22, i.e. that
Conjecture 3.1.1 for ω(G) = 4 reduces to the corresponding case of the Erdős–Nešetřil
conjecture.

Theorem 3.5.3. Let G = (V,E) be a connected claw-free graph with ω(G) = 4. Then
one of the following is true:

1. G is the line graph L(F ) of a graph F of maximum degree 4; or

2. there exists v ∈ V with degG2(v) ≤ 19 such that the set of all vertices x ∈ NG(v)
with degG2(x) ≥ 21 induces a clique in (G \ v)2.
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Proof. First we show that either case 1 applies or that there exists a vertex v ∈ V with
degG2(v) ≤ 19. At the end, we show that, for all such v, it also holds that the set of
vertices x ∈ NG(v) with degG2(x) ≥ 21 induces a clique in (G \ v)2.

First note that the maximum degree ∆(G) of G is at most 8. This follows from
Lemma 3.2.1 and the fact that R(4, 3) = 9.

For v ∈ V with deg(v) ≤ 4, we have degG2(v) ≤ 4 + 4 · 3 = 16 by Lemma 3.2.2.
Note that, for v ∈ V with deg(v) = 5, we have degG2(v) ≤ 5 + 5 · 3 = 20 by

Lemma 3.5.1, but equality cannot occur here unless Z(v) = Ø. (Indeed, if Z(v) 6= Ø,
then

For v ∈ V with deg(v) = 5 and Z(v) = Ø, G[N(v)] is the disjoint union of cliques,
and in particular it must be the disjoint union of an edge and a triangle.

For v ∈ V with deg(v) = 7, we have degG2(v) ≤ 7 + 21/2 = 17.5 by Corollary 3.5.2.
Let v ∈ V with deg(v) = 8. By Corollary 3.5.2, Z(v) = N(v) and so we already have

degG2(v) ≤ 8 + 24/2 = 20, but we want one better. Let w ∈ N(v). By Lemma 3.2.2,
N(v) \ (NG[N(v)](w) ∪ {w}) is a clique, so degG[N(v)](w) ≥ deg(v) − ω(G) = 4. Now
NG[N(v)](w) contains no clique or stable set of three vertices, or else G contains a clique
of 5 vertices or a claw. We can therefore find four vertices x1, x2, x3, x4 ∈ NG[N(v)](w)
such that x1x2, x3x4 /∈ E. (There is at least one non-edge among x1, x2, x3, say, x1x2.
Since G is claw-free at least one of x1x3 and x2x3 is an edge, say, x2x3. Among
x2, x3, x4, there is at least one non-edge, which together with x1x2 or x1x3 forms a
two-edge matching in the complement, which is what we wanted, after relabelling.)
By Lemma 3.2.3, for every y ∈ N(w) \ ({v} ∪ N(v)), either x1y ∈ E or x2y ∈ E and
x3y ∈ E or x4y ∈ E. We have just shown that every vertex in N(N(v)) \ {v} has at
least three neighbours in N(v). Therefore, |N(N(v)) \ {v}| ≤ 1

3 deg(v)(ω(G)− 1) = 8
and degG2(v) ≤ 16.

Let v ∈ V with deg(v) = 6. By Lemma 3.2.2, the minimum degree of G[N(v)]
satisfies δ(G[N(v)]) ≥ deg(v) − ω(G) = 2. Since G contains no clique of 5 vertices,
every vertex with degree at least 3 in G[N(v)] must also be in Z(v). So we know there
are at most two such vertices, or else by Lemma 3.5.1 degG2(v) ≤ 6+b(6−3/2)·3c = 19.
First suppose there is a vertex w with degree 5 in G[N(v)]. Since NG[N(v)](w) contains
no clique or stable set of three vertices, it must be that G[N(v)] consists of w adjacent
to all vertices of a 5-cycle, in which case all six vertices have degree at least 3 in
G[N(v)]. This contradicts that at most two vertices of degree at least 3 are allowed
in G[N(v)]. Next suppose that there is a vertex w with degree 4 in G[N(v)]. Then
there exists w′ ∈ N(v) with ww′ /∈ E. As we argued in the last paragraph, there
exist x1, x2, x3, x4 ∈ NG[N(v)](w) such that x1x2, x3x4 /∈ E. Since G is claw-free, it
must be that w′ is adjacent to one of x1 and x2 and also to one of x3 and x4; without
loss of generality suppose x1w

′, x3w
′ ∈ E. It follows that x1, x3, w are three vertices

with degree at least 3 in G[N(v)], which was not allowed. So now we have reduced to
the case where 2 ≤ δ(G[N(v)]) ≤ ∆(G[N(v)]) ≤ 3 and there are at most two vertices
with degree 3 in G[N(v)]. Since G is claw-free, there are only two possibilities for the
structure of G[N(v)]: either it is a disjoint union of two triangles, or it is that graph
with the inclusion of exactly one additional edge.

We call a vertex v good if its neighbourhood structure does not satisfy one of the
following:

• G[N(v)] is the disjoint union of a singleton and a triangle;
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• G[N(v)] is the disjoint union of an edge and a triangle;

• G[N(v)] is the disjoint union of an edge and a triangle plus one more edge;

• G[N(v)] is the disjoint union of two triangles;

• G[N(v)] is the disjoint union of two triangles plus one more edge; or

• G[N(v)] is the disjoint union of two triangles plus two more non-incident edges.

Recall that a graph is the line graph of a graph if its edges can be partitioned into
maximal cliques so that no vertex belongs to more than two such cliques and addi-
tionally, no two vertices are both in the same two cliques. If no vertex v ∈ V is good,
then we can designate the maximal cliques as follows: for each v ∈ V and for any C
one of the two maximum cliques of G[N(v)] specified in one of the cases above (this is
well-defined), we designate v ∪ C as a maximal clique for the requisite edge partition.
Indeed, every edge v1v2 is designated as part of one of the cliques, either from the
perspective of v1 or of v2. Moreover, the clique to which v1v2 is designated does not
differ depending on the endpoint from which the perspective is taken, by a brief con-
sideration of the six impermissible neighbourhood structures defining a good vertex.
As each of the designated cliques has at most four vertices, it follows that in this case
G is the line graph L(F ) of a graph F of maximum degree 4.

Our case analysis has shown that either no vertex of G is good, in which case G
is the line graph of a graph of maximum degree 4, or there is some good v ∈ V with
degG2(v) ≤ 19. From now on, we fix one such good vertex v.

Let us call a vertex x very bad if degG2(x) ≥ 21. We already observed that x must
then have deg(x) = 6. By the case analysis above, the neighbourhood of x either
induces a disjoint union of two triangles or is that graph plus one more edge. However,
the latter case is excluded, as we will now demonstrate. Suppose the neighbourhood
of a vertex x induces two triangles w1w2w3 and w4w5w6 plus one more edge w1w4.
Our goal is to derive then that degG2(x) ≤ 20, so that x cannot be very bad. By
Lemma 3.2.2, wi has at most three neighbours outside {v}∪N(v), for all i ∈ {2, 3, 5, 6}.
So it suffices to show that {w1, w4} cannot have three neighbours outside {v} ∪N(v)
which are not a neighbour of {w2, w3, w5, w6}. By contradiction, let p, q, r be these
neighbours. Without loss of generality, p is a neighbour of w1. Then p is also adjacent
to w4 (otherwise claw). The same argument applies to q and r, so that {p, q, r} must
be complete to {w1, w4}. Furthermore, by claw-freeness, pqr must be a triangle. But
then {w1, w4, p, q, r} induces a K5. Contradiction. This completes the proof that the
neighbourhood of a very bad vertex induces the disjoint union of two triangles.

Let x1 be a very bad vertex in N(v). Since N(x1) induces two disjoint triangles
(one containing v) it follows that x1 is part of a triangle x1x2x3 in N(v) and there is
no edge between x1 and N(v) \ {x1, x2, x3}. Thus each vertex in N(v) \ {x1, x2, x3} is
at distance exactly 2 from x1 (with respect to G) so that N(v) \ {x1, x2, x3} is a clique
by Lemma 3.2.2.

Suppose now that the very bad vertices in N(v) do not form a clique in (G \ v)2.
Writing N(v) := {x1, . . . , x6}, then there exist two very bad vertices x1, x6, say, that
are at distance greater than 2 in G \ v. By the previous paragraph, N(v) is covered
by two disjoint triangles. Because v is good, it follows (up to symmetry of x1 and x6)
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that the following is a subgraph of the graph induced by N(v): two disjoint triangles
x1x2x3 and x4x5x6 plus two edges x2x4, x3x4. Note that x2, x3 and v are neighbours
of x1 that have a common neighbour at distance 2 from x1, namely x4, and separately
from that, x2 and x3 have a common neighbour in N(N(x1)) ∩N(N(v)) \ {v, x1}. It
follows that degG2(x1) ≤ 20, contradicting that x1 is very bad. We have shown that
the very bad vertices in N(v) form a clique in (G\v)2 and this concludes the proof.

3.6 Clique number at least five

The proof of Theorem 3.5.3 suggests the following refinement of Lemma 3.5.1. This
could be useful towards reductions to the line graph setting for ω(G) ≥ 5.

For G = (V,E) and v ∈ V and w ∈ N(v), we define q(w) to be the matching number
of the complement of G[NG[N(v)](w)]. Note that q(w) ≥ 1 if and only if w ∈ Z(v).

Lemma 3.6.1. Let G = (V,E) be a claw-free graph. For any v ∈ V ,

|N(N(v)) \ {v}| ≤
∑

w∈N(v)

|N(w) \ ({v} ∪N(v))|
q(w) + 1

≤ (ω(G)− 1)
∑

w∈N(v)

1

q(w) + 1
.

Proof. Let a1b1, a2b2, . . . , aq(w)bq(w) be edges of a maximum matching in the comple-
ment of G[NG[N(v)](w)]. Note that w and a1, b1, . . . , aq(w), bq(w) are all distinct vertices
inN(v)∩N(w). Let x ∈ N(w)\{v}. For all i ∈ {1, . . . , q(w)}, it holds that wai, wbi ∈ E
and aibi /∈ E, so by Lemma 3.2.3 x is not only a neighbour of w, but also a neighbour
of ai or bi. This implies that |{u ∈ N(v) | x ∈ N(u)}| ≥ q(w) + 1. So

|N(N(v)) \ {v} | =
∑

w∈N(v)

∑
x∈N(w)\({v}∪N(v))

1

|{u ∈ N(v) | x ∈ N(u)}|

is at most
∑
w∈N(v) |N(w) \ ({v} ∪N(v))|/(q(w) + 1). Now apply Lemma 3.2.2.

Lemma 3.6.1 yields the following corollary.

Corollary 3.6.2. Let G = (V,E) be a claw-free graph with ω(G) ≥ 4. For any v ∈ V
with deg(v) ≥ 2ω(G)− 1,

|N(N(v)) \ {v}| ≤ deg(v)(ω(G)− 1)

d(deg(v) + 1)/2e+ 2− ω(G)
.

Proof. Let w ∈ N(v). It suffices to establish a suitable lower bound for q(w). By
Lemma 3.2.2, degG[N(v)](w) ≥ deg(v) − ω(G) ≥ ω(G) − 1, and so in any subset of
NG[N(v)](w) with at least ω(G) − 1 vertices there must be at least one non-edge (or
else G has a clique of ω(G) + 1 vertices). So we can iteratively extract two vertices
from NG[N(v)](w) that form an edge of the complement of G[NG[N(v)](w)] until at most
ω(G)− 2 vertices remain. It follows that

q(w) ≥
⌈

1

2
(degG[N(v)](w)− (ω(G)− 2))

⌉
≥
⌈

1

2
(deg(v)− ω(G)− (ω(G)− 2))

⌉
= ddeg(v)/2e+ 1− ω(G).
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If deg(v) is even, then after we have extracted ddeg(v)/2e−ω(G) pairs as above at
least ω(G) vertices remain, call them x1, . . . , xω(G). Among x1, . . . , xω(G)−1 there is at
least one non-edge, say, x1x2 /∈ E without loss of generality.

Since ω(G) ≥ 4, there is at least one non-edge ab among x2, . . . , xω(G), and at least
one non-edge cd among x1, x3, . . . xω(G). The non-edges x1x2, ab and cd may not form
a stable set of size three, since otherwise there would be a claw. Therefore at least two
of them comprise a two-edge matching in the complement of G[{x1, . . . , xω(G)}]. So
indeed we have for any parity of deg(v) that

q(w) ≥ d(deg(v) + 1)/2e+ 1− ω(G).

As w was arbitrary, the result now follows from Lemma 3.6.1.

Let us now make explicit some general consequence of Corollary 3.6.2. An awkward
but routine optimisation checks that for k ≥ 5 and x ∈ {2k−1, 2k, . . . }, the expression

f(x) := x + x(k−1)
d(x+1)/2e+2−k is maximised with x = 2k − 1 or with x ∈ {y, y + 1} for

y as large as possible. (This follows e.g. from the facts that f(2k − 1) > f(2k) and

that there is some x0 > 2k − 1 such that the derivative of f∗(x) := x + x(k−1)
(x+1)/2+2−k

is negative for all 2k − 1 ≤ x < x0 and positive for all x > x0.) By Lemma 3.2.1,
R(ω(G), 3)− 1 and R(ω(G), 3)− 2 are the two largest allowed values of deg(v). So by
Corollary 3.6.2, if v is a vertex of a claw-free graph G with deg(v) ≥ 2ω(G)− 1, then
degG2(v) ≤ max{f(2ω(G)− 1), f(R(ω(G), 3)− 1), f(R(ω(G), 3)− 2)}, yielding

degG2(v) ≤max

{
2ω(G)− 1 + (ω(G)− 1/2)(ω(G)− 1),

R(ω(G), 3)− 2 +
(R(ω(G), 3)− 2)(ω(G)− 1)

(R(ω(G), 3)− 1)/2 + 2− ω(G)
, (3.1)

R(ω(G), 3)− 1 +
(R(ω(G), 3)− 1)(ω(G)− 1)

R(ω(G), 3)/2 + 2− ω(G)

}
.

Moreover, (3.1) remains valid when we substitute R(ω(G), 3) with any upper bound. It

is known [40] that R(ω(G), 3) ≤
(
ω(G)+1

2

)
. With this and some routine calculus, (3.1)

implies that degG2(v) ≤ 2ω(G)(ω(G) − 1) provided ω(G) ≥ 3. Since those v with
deg(v) ≤ 2ω(G) − 2 have degG2(v) ≤ 2ω(G)(ω(G) − 1) by Lemma 3.2.2, we have the
following “trivial” bound on χ(G2). This was proved not via ∆(G2) but by a different
method in [63].

Corollary 3.6.3. If G is a claw-free graph, then χ(G2) ≤ ∆(G2) + 1 ≤ 2ω(G)(ω(G)−
1) + 1.

Also (3.1) implies that, if v is a vertex of a claw-free graph G with deg(v) ≥
2ω(G) − 1, then degG2(v) ≤ 1

4 (5ω(G)2 − 2ω(G) + 1) − 1 provided ω(G) ≥ 5. We use
this for the following.

Theorem 3.6.4. Let G = (V,E) be a connected claw-free graph with ω(G) = ω ≥ 5.
Then one of the following is true:

1. G is the line graph L(F ) of a graph F of maximum degree ω; or
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2. there exists v ∈ V with degG2(v) ≤ 2ω(ω−1)−4 such that degG2(x) ≤ 2ω(ω−1)−3
for all x ∈ NG(v).

Proof. By the last remark (which followed from Corollary 3.6.2), for v ∈ V with
deg(v) ≥ 2ω − 1, we have that degG2(v) ≤ 1

4 (5ω2 − 2ω + 1) − 1 ≤ 2ω(ω − 1) − 4
since ω ≥ 5.

For v ∈ V with deg(v) ≤ 2ω − 3, we have by Lemma 3.2.2 that degG2(v) ≤
ω(2ω − 3) ≤ 2ω(ω − 1)− 4 since ω ≥ 5.

Let v ∈ V with deg(v) = 2ω−2. If G[N(v)] is not the disjoint union of two cliques,
then |Z(v)| ≥ 2. (Clearly |Z(v)| > 0 if G[N(v)] is not the disjoint union of two cliques,
but if on the contrary |Z(v)| = 1 then let w ∈ N(v) be the unique vertex such that
there exist x, y ∈ N(v) for which xw,wy ∈ E, xy /∈ E. By the uniqueness of w, x does
not have any neighbours in N(v) in common with y. Moreover, ({x} ∪N(x)) ∩N(v)
is a clique, because otherwise we would either have a claw or x ∈ Z(v). By the
uniqueness of w, ({x} ∪N(x)) ∩N(v) ⊆ N(w) ∪ {w}. The same arguments hold with
the roles of x and y exchanged. It follows that G[N(v)] is the union of two cliques
with exactly one vertex in common. Since each clique in G[N(v)] is of size at most
ω− 1, this is a contradiction to deg(v) = 2ω− 2.) It then follows by Lemma 3.5.1 that
degG2(v) ≤ (2ω − 1)(ω − 1) ≤ 2ω(ω − 1)− 4 since ω ≥ 5.

We have shown that one of the following two possibilities must hold for G:

1. for every v ∈ V it holds that G[N(v)] is the disjoint union of two cliques of size
ω − 1 or that same graph with one extra edge between the two cliques, or the
disjoint union of two cliques one of size ω − 2 the other of size ω − 1; or

2. there is some v ∈ V with degG2(v) ≤ 2ω(ω − 1)− 4.

In the former situation, G is the line graph of a graph of maximum degree ω.
Let us call a vertex v very bad if degG2(v) ≥ 2ω(ω−1)−2. We already observed that

v must then have deg(v) = 2ω−2. As argued just above, Lemma 3.5.1 implies that the
neighbourhood of v induces a disjoint union of two cliques of size ω−1. Moreover, using
Lemma 3.2.2, we have that for every neighbour x of v the neighbourhood of x induces
the disjoint union of two cliques of size ω − 1, or that same graph plus one more edge,
or the disjoint union of two cliques one of size ω−2 the other of size ω−1. This implies
that, for every vertex v for which we showed above that degG2(v) ≤ 2ω(ω− 1)− 4 (not
including those cases corresponding to the promised line graph of maximum degree
ω), it also holds that N(v) does not contain a very bad vertex. This completes the
proof.

Proof of Theorem 3.1.3. Together with the trivial bound, Theorem 3.6.4 certifies that
we can apply Lemma 3.3.1 with K = K ′ = max{χ′s(ω), 2ω(ω − 1)− 3} − 1.

We wanted to illustrate how our methods could extend to larger values of ω(G). It
is likely that Theorem 3.6.4 can be improved, particularly since we did not use the full
strength of Lemma 3.3.1. On the other hand, since the Erdős–Nešetřil conjecture itself
is open apart from the case of graphs of maximum degree at most 3, we leave this to
further investigation.



Chapter 4

Strong cliques in cycle-free
graphs

In support of a notorious conjecture of Erdős and Nešetřil, a classic result due to
Faudree, Gýarfás, Schelp and Tuza is that in every bipartite graph of maximum degree
∆, there are at most ∆2 edges in any set of edges every pair of which is either incident
or connected by an edge, i.e. the graph has strong clique number at most ∆2. We put
forward four strengthened versions of this result. First, we show that every C5−free
multigraph has strong clique number at most ∆2, and we also derive a strengthened
bound in terms of the Ore-degree. Second, we show that every triangle-free graph of
maximum degree ∆ has strong clique number at most 5

4∆2, which is sharp due to
blown-up C5’s. Third, we conjecture that in any graph of maximum degree ∆ ≥ 4
that additionally contains no cycle of length 2k, the strong clique number is at most
(2k − 1)(∆ − k + 1), which would be sharp. We prove it for k = 2 and for general k
we derive a slightly worse bound. Fourth, we conjecture that in any bipartite graph
of maximum degree ∆ ≥ 2 that additionally contains no cycle of length 2k, the strong
clique number is at most k∆ + 1− k, which would be sharp if true. We provide some
evidence towards this conjecture. Along the way, we also obtain that the strong clique
number is essentially bounded by the product of ∆(G) and the Hadwiger number h(G)
of G.

4.1 Introduction

4.1.1 Strong chromatic index and strong clique number

The strong chromatic index χ(L(G)2) of a graph G is the chromatic number of the
square of the line graph of G. Equivalently, it is the minimum number of colours one
needs in order to colour the edges of G, such that every two edges that are at distance
≤ 1 receive different colours.

Since ∆(L(G)2) < 2∆(G)2, a trivial upper bound for the strong chromatic index is
ω(L(G)2) ≤ 2∆(G)2. Erdős and Nešetřil [39] conjectured the following stronger bound.

55
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Conjecture 4.1.1 ([39, 43]). For any graph G of maximum degree ∆,

χ(L(G)2) ≤ 5

4
∆2.

If true, Conjecture 4.1.1 is sharp for even ∆. This is exemplified by a blown-up
5-cycle, which is the graph obtained after replacing each vertex in a C5 with a stable
set of size k and replacing each edge ab of C5 with a complete bipartite graph between
the stable sets corresponding to a and b. This graph has maximum degree 2k and has
5/2k2 edges, which are all within distance 2 from each other. Therefore the square
of its line graph is a clique and χ(L(G)2) = 5/2k2 = 5/4∆2. For odd ∆, Erdős and
Nešetřil conjectured that χ(L(G)2) ≤ 5

4∆2 − 1
2∆ + 1, which again would be sharp.

Molloy and Reed [86] combined a structural estimate with a probabilistic colouring
method to find a fixed but very small ε > 0 such that χ(L(G)2) ≤ (2 − ε)∆2 for
all graphs. Bruhn and Joos [65] optimized this technique considerably and obtained
χ(L(G)2) ≤ 1.93 · ∆2, for ∆ large enough. In a different direction, Wang [103] has
shown that χ(L(G)2) ≤ (4k − 2)∆− 2k2 + 1 for all k−degenerate graphs.

Since the blown-up 5−cycles contain many odd cycles, it is natural to ask how the
conjecture changes if one restricts to bipartite graphs. Faudree, Gýarfás, Schelp and
Tuza [44] conjectured that among bipartite graphs, the balanced complete bipartite
graphs K∆,∆ are extremal.

Conjecture 4.1.2 ([44]). Let G be a bipartite graph of maximum degree ∆. Then

χ(L(G)2) ≤ ∆2.

More generally, for a bipartite graph on parts X1 and X2, one can define the left
and right maximum degrees ∆i := maxv∈Xi(deg(v)), i ∈ {1, 2}. It is believed that
χ(L(G)2 ≤ ∆1∆2 and this is confirmed [88, 62] for all ∆1 ≤ 3.

Rather than excluding all odd cycles, one can instead remove an even cycle. Since
graphs without a fixed even cycle have a lower Turán number than bipartite graphs
(cf. e.g. [48]), one may expect a stronger effect on the maximal value of the strong chro-
matic index as well. Indeed, Mahdian [82] has shown that for every C4−free graph,
χ(L(G)2) ≤ (2 + ε)∆2/ log(∆), thus exhibiting a reduction in the strong chromatic
index by a logarithmic factor. Subsequently Vu extended this result to any fixed bipar-
tite graph H, showing that there is a constant KH > 0 such that for any H−free graph
G of maximum degree ∆, the strong chromatic index is bounded by KH ·∆2/ log(∆).
Up to the constant, this is sharp.

In this chapter we take a step back. Instead of χ(L(G)2) we investigate the strong
clique number ω(L(G)2), the clique number of the square of the line graph. As op-
posed to the chromatic number, determining the clique number is a local problem and
thus one expects it to be more tractable. At the same time, considering this more
modest problem may provide clues on how (not) to tackle its chromatic counterpart.
Although in general the clique number is merely a lower bound for the chromatic
number, there are major graph classes G for which it has been shown or conjectured
that supG∈G χ(L(G)2) = supG∈G ω(L(G)2). In particular this is believed to be true
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for the class of all graphs of maximum degree ∆ and the class of all bipartite graphs
of maximum degree ∆, as well as the class of all C5−free graphs of maximum degree ∆.

In this chapter we show that ω(L(G)2) ≤ 5/4∆2 for all triangle-free multigraphs
of maximum degree ∆. This is sharp for even ∆ (and almost sharp for odd ∆) and
it equals the conjectured best possible bound for χ(L(G)2). On the other hand, we
show that supG∈G ω(L(G)2) is of markedly smaller order than supG∈G χ(L(G)2) if G is
the class of (bipartite) C4−free graphs of maximum degree ∆, or the class of (bipar-
tite) graphs of maximum degree ∆ witout cycles of order ∈ {k, k + 1, k + 2}, (for some
k ≥ 4).

For bipartite graphs of maximum degree ∆, the extremal value of ω(L(G)2) has
been determined in a classic paper by Faudree, Gýarfás, Schelp and Tuza [44]. It is
attained by the complete balanced bipartite graph K∆,∆.

Theorem 4.1.3 ([44]). Let G be a bipartite graph of maximum degree ∆. Then

ω(L(G)2) ≤ ∆2.

Faron and Postle [42] have derived a strengthening in terms of the Ore-degree of G,
which is defined as σ(G) := maxxy∈E(G)(deg(x) + deg(y)). They showed that for all

bipartite multigraphs G, ω(L(G)2) ≤ 1
4σ(G)2. We prove a strengthening of this; see

Theorem 4.1.6. In particular this demonstrates that for bipartite graphs, the extremal
value of ω(L(G)2) corresponds to the conjectured extremal value of χ(L(G)2). The
same correspondence is expected to hold for the class of all graphs. One piece of
evidence for this is that the conjectured extremal graphs for the colouring problem
(the blown-up 5−cycles) each form a clique in the square of their line graph.

Conjecture 4.1.4 ([44]). Let G be a graph of maximum degree ∆. Then

ω(L(G)2) ≤ 5

4
∆2.

Recently, Śleszyńska-Nowak [99] has shown that ω(L(G)2) ≤ 3
2∆(G)2. Subse-

quently, Faron and Postle [42] improved this to ω(L(G)2) ≤ 4
3∆(G)2. Moreover, they

gave a conditional proof of Conjecture 4.1.4, under the additional condition that when-
ever the edges of a subgraph H ⊆ G form a clique in L(G)2, it holds for all proper
bipartite subgraphs H∗ of H that

|E(H∗)| ≤ 1

4
·
(

max
xy∈E(H∗)

degG[V (H∗)](x) + degG[V (H∗)](y)

)2

.

4.1.2 New results for excluded cycles and paths

We take another direction, focusing on how the strong clique number behaves if we
exclude cycles or paths as a subgraph. First, we show that Conjecture 4.1.4 is true for
all triangle-free graphs. This is sharp because the blown-up 5−cycles are triangle-free.
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Theorem 4.1.5. If G is a triangle-free graph of maximum degree ∆, then

ω(L(G)2) ≤ 5
4∆2.

Now let us see what happens if instead of a triangle we exclude a larger odd cycle
(and we take the number of vertices large enough). It turns out that in terms of
bounding ω(L(G)2), this reduces to the case of bipartite graphs. In particular:

Theorem 4.1.6. If G is a C5−free multigraph of maximum degree ∆ and Ore-degree
σ, then

ω(L(G)2) ≤ σ2

4
≤ ∆2.

This result extends a result proved by Mahdian [82] for C5−free graphs without an
induced matching of size 2. Intuitively, excluding an even cycle rather than an odd
cycle should have a greater effect, since it forces the graph to be more sparse. Indeed
we show the following.

Theorem 4.1.7. If G is a C4−free graph with maximum degree ∆ > 3, then

ω(L(G)2) ≤ 3(∆− 1).

This is sharp.

Thus the maximum possible value of ω(L(G)2) among C4−free graphs is linear in
∆. On the other hand, by analyzing a suitable random graph it can be shown (see [82])
that for all g ≥ 4 and sufficiently large ∆, there exists a graph of girth at least g and
maximum degree ∆ such that χ(L(G)2) ≥

(
1
2 + o(1)

)
∆2/ ln(∆). In particular we can

conclude that excluding C4’s has a much stronger diminishing effect on ω(L(G)2) than
it has on χ(L(G)2).

An extremal graph for Theorem 4.1.7 is a triangle x1x2x3 of which each vertex has
∆−2 additional neighbours of degree 1 outside the triangle. We call this type of graph
a hairy clique. More generally, for an integer k ≥ 1, we define the hairy clique Hk as
the graph consisting of a clique on k vertices, each of which has ∆− k + 1 neighbours
of degree 1 outside the clique. Note that all edges of Hk are within distance two, so
ω(L(Hk)2) = |E(Hk)| = k

(
∆− k−1

2

)
.

We conjecture the following generalization of Theorem 4.1.7. Here Pk denotes the
path on k vertices.

Conjecture 4.1.8. Let k ≥ 1 be an integer. Let G be a graph of maximum degree
∆ ≥ max(4, k − 1). Suppose that either G is Pk+3−free, or k + 1 is even and G is
Ck+1-free. Then

ω(L(G)2) ≤ ω(L(Hk)2) = k
(
∆− k−1

2

)
.

We have the following additional evidence, which is sharp up to a small term only
depending on k for the path-free result.

Theorem 4.1.9. Let G be a graph with maximum degree ∆ ≥ 2.

• Let k ≥ 1 be an integer. If G is Pk+3−free then

ω(L(G)2) ≤ k · (∆− 1) + 2.
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• Let l ≥ 3 be an integer. If G does not contain any cycle of order ∈ {l + 1, l + 2, l + 3},
then

ω(L(G)2) ≤ l · (∆− 1) + 2.

As mentioned before, supG∈G χ(L(G)2) is of the order ∆2/ log(∆) for G the class
of C2k−free graphs. So again we observe a marked difference with supG∈G ω(L(G)2),
which is only of linear order in ∆.

Note that for the cycle-free result in Theorem 4.1.9 we need to exclude more than
one cycle, namely cycles of three consecutive orders (yet if we choose l even then only
one of those cycles is of even order!). This is an artefact of the proof. In the proof we
argue by contradiction that ω(L(G)2) is large. We take a maximum clique in L(G)2

and derive the existence of certain long paths that start and end on edges from this
clique. Two such edges need to be within distance 2, so there must be a long cycle.
Thus the cycle-free result follows as a relatively simple corollary to the path-free result.

In summary, so far we have described the effect on ω(L(G)2) if we exclude all odd
cycles (ie: bipartite graphs), a triangle, a larger odd cycle, a path or an even cycle.
We now zoom in one step further and ask what happens if we exclude all odd cycles
and an even cycle. For comparison, we first want to know how small supG∈G χ(L(G)2)
can get for G the class of bipartite graphs of girth at least g ≥ 4. We minimally adapt
an argument from [82] to demonstrate that even in this very restricted graph class,
χ(L(G)2) can be as high as Ω(∆2/ log(∆)).

Lemma 4.1.10. For every g ≥ 4 and sufficiently large ∆, there is a bipartite graph G
of girth at least g and maximum degree ∆, such that

χ(L(G)2) ≥ ( 1
2 − o(1))

∆2

ln(∆)
.

As we saw in Theorem 4.1.9, ω(L(G)2) can be at most linear in ∆ when three cycles
of consecutive order are excluded. We conjecture and partially prove that this extremal
value is reduced by roughly a factor 2 if we additionally impose that the graphs be
bipartite.

Conjecture 4.1.11. Let k ≥ 2 be an integer. Let G be a C2k-free bipartite graph of
maximum degree ∆. Then

ω(L(G)2) ≤ k∆ + 1− k.

If true, this bound is sharp for k ≤ ∆ + 1. An extremal graph would be the complete
bipartite graph on parts X and Y of sizes k−1 respectively ∆, where one of the vertices
in Y has ∆− k + 1 additional neighbours of degree 1.

We furthermore believe that if G is P2k+1-free, then

ω(L(G)2) ≤
{
k∆ + 1− k if k 6= ∆;

k∆ if k = ∆.
(4.1)

with the same extremal graphs except in the case k = ∆, for which the complete
balanced bipartite graph K∆,∆ should be extremal. We now present some evidence for
Conjecture 4.1.11 and the proposed bound in (4.1).
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Lemma 4.1.12. Conjecture 4.1.11 and bound (4.1) are true for k = 2 and k ≥ ∆ + 1.

For general k we obtain the following result, which is very close to sharp in the
regime k ≤ ∆/2 + 1.

Theorem 4.1.13. Let k ≥ 2 be an integer. If G is a bipartite graph of maximum
degree ∆ that is P2k+1−free or (C2k−free and C2k+2−free), then

ω(L(G)2) ≤ max(k∆, 2k(k − 1)).

As it turns out, any upperbound in the bipartite graph setting also yields a bound
for more general classes of graphs that are both C3−free and C5−free.

Lemma 4.1.14. Let G be a class of graphs that is C3−free, C5−free and invariant
under vertex-deletion. Let Gbip be the maximal subclass of G containing only bipartite
graphs. Then

max
G∈G

ω(L(G)2) = max
G∈Gbip

ω(L(G)2).

Proof. Since Gbip ⊆ G, it suffices to show that maxG∈G ω(L(G)2) ≤ maxG∈Gbip ω(L(G)2).
Let G ∈ G be such that ω(L(G)2) is maximum. Let H be a subgraph of G whose edges
form a maximum clique in L(G)2. Let e = uv ∈ E(H). Because G is C3−free and
C5−free, it follows that G∗ := G[N(u)∪N(v)∪N(N(u))∪N(N(v))] is bipartite. Since
H is a subgraph of G∗ and all possible edges (in G) between edges of H are contained
in G∗, it follows that ω(L(G∗)2) = |E(H)| = ω(L(G)2).

In particular, for any graph H, we can take G to be the class of graphs of maximum
degree ∆ that are C3−, C5− and H−free. Lemma 4.1.14 says that in order to maximize
the strong clique number for this class, it suffices to consider H−free bipartite graphs.
This yields the following (almost sharp) corollary.

Corollary 4.1.15. Let 2 ≤ k ≤ ∆
2 + 1. If G is a graph of maximum degree ∆ without

any cycle of order ∈ {3, 5, 2k, 2k + 2}, then

ω(L(G)2) ≤ k∆.

4.1.3 New results for bounded Hadwiger number

Rather than excluding paths and cycles as a subgraph, as we did up to now, one could
also ask how ω(L(G)2) behaves if we forbid a minor. In this subsection we upperbound
ω(L(G)2) ≤ h(G) ·∆(G), where h(G) is the Hadwiger number of G, the order of the
largest clique that is a minor of G. This is close to sharp because of the hairy cliques.
Assuming Hadwiger’s conjecture, we derive that essentially the same upper bound
should hold for the strong chromatic index.

Theorem 4.1.16. Let 1 ≤ k ≤ ∆+1
2 . Let G be a graph of maximum degree ∆ and

without Kk as a minor. Then

ω(L(G)2) ≤ (k − 1) ·∆.
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Figure 4.1: The complete bipartite graph Kk−1,∆, where one vertex in the part of size
∆ has ∆− k+ 1 additional neighbours. This is a P2k+1−free and C2k−free graph that
(for k 6= ∆) attains the bound of Conjecture 4.1.11.

Albeit the bound given in Theorem 4.1.16 is close to sharp in the most relevant
regime k � ∆, there is still some room to improve it. The mild condition 1 ≤ k ≤ ∆+1

2
is an artefact of the proof and in fact, it is easy to show along the same lines that
ω(L(G)2) ≤ (k − 1)(2∆ − 1), unconditional on the ratio of k and ∆. We believe that
hairy cliques are the extremal graphs for this problem, just as for the class of graphs
without a given path or even cycle.

Conjecture 4.1.17. Let k ∈ N≥1. Let G be a graph without Kk as a minor and of
sufficiently large maximum degree ∆. Then

ω(L(G)2) ≤ (k − 1) · (∆− k−2
2 ).

If true, this bound is attained by hairy cliques.

If we impose additionally that all edges of G are within distance two, so that L(G)2

is a complete graph, then we also have a short argument for the strong clique number
of multigraphs. Using the Tutte-Berge formula [10], the following result can be derived.

Lemma 4.1.18. Let k ∈ N≥1. Let G be a multigraph of maximum degree ∆ without
Kk as a minor. If L(G)2 is a complete graph, then

ω(L(G)2) = |E(G)| ≤ (k − 1
2 ) ·∆.

For k = 5 this is sharp up to a constant, because there exists a planar multigraph
with ω(L(G)2) = 9

2∆− 6, namely the multigraph obtained from the octahedral graph
on vertices abcdef by blowing up the edges in the triangle abc to edges of mulitiplicity
∆/2− 1 and adding three extra edges of mulitiplicity ∆− 4 incident to d, e and f . In
particular this implies that the extremal values of the strong clique number for graphs
respectively multigraphs (with bounded Hadwiger number and bounded maximum de-
gree) do not coincide. This contrasts with e.g. Theorem 4.1.6.
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If we assume Hadwiger’s conjecture is true, then we can extend the above results
to the strong chromatic index.

Lemma 4.1.19. Let k ∈ N≥1. Let G (respectively M) be a graph (respecitvely multi-
graph) of maximum degree ∆ without Kk as a minor. If Hadwiger’s conjecture holds
true, then

χ(L(G)2) ≤ (k − 1) · (∆ + 1) and

χ(L(M)2) ≤ (k − 1) · 3

2
∆.

Proof. By Vizing’s theorem, the edges of G can be coloured with at most ∆+1 colours.
Let C be one of the colour classes. Contract each edge e ∈ C to a vertex v(e), yielding
a new graph G∗. Hadwiger’s conjecture implies that we can vertex-colour G∗ with at
most h(G∗) ≤ h(G) colours. Now we give each e ∈ C the colour of its contracted vertex
v(e). This yields a colouring of C such that each edge pair (in C) at distance 2 (with
respect to G) has different colours. Doing this for each of the ∆ + 1 colour classes, we
obtain a strong edge-colouring with at most h(G) · (∆ + 1) colours. This proves the
result for graphs. For multigraphs, apply the same argument with Shannon’s theorem
instead of Vizing’s theorem.

4.1.4 From clique number to fractional chromatic number

Before going to the remaining proofs, we wish to illustrate how knowledge of the
clique number sometimes can provide good upperbounds on the (fractional) chromatic
number. Reed conjectured that for all graphs G, its chromatic number is essentially
bounded from above by the average of its clique number and maximum degree.

Conjecture 4.1.20 (Reed [91]). For any graph G,

χ(G) ≤
⌈
ω(G) + ∆(G) + 1

2

⌉
.

This conjecture has been validated for several classes of graphs, among which are
line graphs [71] and even more generally claw-free graphs [70],[72], but remains wide
open in general. Molloy and Reed [87] proved a fractional analogue of Reed’s conjecture
for all graphs.

A fractional vertex c−colouring of a graph G can be described as a collection
{S1, . . . , Sl} of stable sets with associated nonnegative weights {w1, . . . , wl} such that

for every vertex v,
∑
Si:v∈S wi = 1 and

∑l
i=1 wi = c. Note that if we would also require

all weights to be 1 then we would obtain the definition of an ordinary proper colour-
ing. The fractional chromatic number χf (G) of G is the smallest c for which G has a
fractional vertex c−colouring.

Theorem 4.1.21 (Molloy and Reed [87]). For any graph G,

χf (G) ≤ ω(G) + ∆(G) + 1

2
.

Since ∆(L(G)2) ≤ 2∆(G)2−2∆(G)+1 for all graphs, we obtain as a corollary from
Theorem 4.1.5 that:
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Corollary 4.1.22. If G is a triangle-free graph of maximum degree ∆, then

χf (L(G)2) ≤ 13
8 ∆2 −∆ + 1.

Furthermore, if Reed’s conjecture holds true then this bound (rounded upwards) holds
for χ(L(G)2) as well.

This concludes the introduction. We will now provide the remaining proofs of our
results.

4.2 Triangle-free graphs.

In this section, we prove Theorem 4.1.5. For a (multi)graph G and a sub(multi)graph
H, the Ore-degree of H in G is defined as σG(H) := maxxy∈E(H) (degG(x) + degG(y)),
where degG(x) denotes the degree of x in G. The following lemma of Faron and Postle
plays a central role in the proof.

Lemma 4.2.1 (Faron and Postle [42]). If G is a bipartite multigraph and H is a
sub(multi)graph of G such that E(H) is a clique in L(G)2, then |E(H)| ≤ ∆(H) ·
(σG(H)−∆(H)) ≤ σG(H)2

4 .

We will apply this lemma to an appropriate bipartite subgraph of our triangle-free
graph.

Proof of Theorem 4.1.5
Let H be a subgraph of G whose edges form a maximum clique in L(G)2. From now
on we call H and its edges blue. Let v ∈ V (G) be of maximal blue degree s. Let VT
denote the set of vertices that are incident to an edge of H that is not incident to N [v].
Let GT = (VT , ET ) be the graph induced by VT and let HT = (VT , ET ∩E(H)) be the
blue subgraph of GT .

Let C1, C2, . . . denote the connected components of HT . Let pq be an edge in
component Ci. For all x ∈ NH(v), the blue edges xv and pq must be within distance
2. They are not incident, so either xp ∈ E(G) or xq ∈ E(G). By triangle-freeness,
we cannot have both xp, xq ∈ E(G). It follows that pq partitions NH(v) into Ai :=
NG(p) ∩NH(v) and Ai := NG(q) ∩NH(v). We will call (Ai, Ai) the partition induced
by pq. Now suppose Ci contains another edge qr which is incident to pq. Then by
triangle-freeness, qr induces the same partition. It follows inductively that all edges in
Ci induce the same partition (Ai, Ai) of NH(v).

Let C1, . . . , Ck be the components that induce the trivial partition (Ø, NH(v)) (if
they exist). Let M = |C1| + . . . + |Ck| denote the number of (blue) edges that are in
these ‘trivial’ components. On the other hand, let GB := G[

⋃
i≥k+1 V (Ci)] and HB :=

H[
⋃
i≥k+1 V (Ci)] be the graphs induced by the remaining ‘nontrivial’ components.

Claim 1 M ≤ (∆− s)∆.

Claim 2 σGB (HB) ≤ 2∆− s− M
∆ .

Claim 3 GB is bipartite.
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We postpone the proofs of these claims. Note that E(HB) is not only a clique in
L(G)2 but also in L(GB)2. So by Claim 3, we may apply Lemma 4.2.1 and then Claim
2, yielding

|E(HB)| ≤ σGB (HB)2

4
≤ (2∆− s− M

∆ )2

4
.

It follows that ω(L(G)2) is at most

|E(H)| = # {e ∈ E(H) | e incident to NG(v)}+ |E(HT )|
≤ s · |NG(v)|+M + |E(HB)|

≤ s∆ +M +
(2∆− s− M

∆ )2

4

= ∆2 +
1

4

(
s+

M

∆

)2

≤ 5
4∆2,

where we used Claim 1 in the last line. This concludes the proof, conditioned on
the validity of Claims 1, 2 and 3.

Given the i−th component Ci, let Xi respectively Yi denote the set of vertices in
Ci whose neighbourhood in NH(v) is Ai respectively Ai. Note that Xi is complete to
Ai and Yi is complete to Ai. Furthermore, the bipartite subgraph of H induced by Ci
has parts Xi and Yi.

Proof of Claim 1
If Ci is a trivial component (1 ≤ i ≤ k) then Yi is complete to Ai = NH(v). Therefore
|⋃1≤i≤k Yi| ≤ ∆, and for the same reason all y ∈ ⋃1≤i≤k Yi satisfy |NHT (y)| ≤ ∆− s.
So M ≤ |NHT

(⋃
1≤i≤k Yi

)
| ≤ ∆(∆− s).

Proof of Claim 2
Let e = pq ∈ E(HB). Then for all x ∈ NH(v), x must be adjacent to either p or q. So
there are |NH(v)| = s edges between {p, q} and NH(v). Also, pq must be at distance
2 of every of the M edges induced by the trivial components. So there are at least M

∆

edges between {p, q} and the trivial components. So at least s + M
∆ edges incident to

{p, q} are not in GB . It follows that σGB (e) = dGB (p) + dGB (q) ≤ 2∆− s− M
∆ .

Proof of Claim 3
Suppose there are two different nontrivial components, Ci and Cj . We will first show
that we may then assume that either Ai ⊆ Aj or Aj ⊆ Ai. Indeed: if either Aj ⊆ Ai
or Ai ⊆ Aj , then after interchanging Xj and Yj (and thus interchanging Aj and Aj),
we obtain Aj ⊆ Ai or Ai ⊆ Ai. So we may assume for a contradiction that none of
Ai ⊆ Aj , Ai ⊆ Aj , Aj ⊆ Ai, Aj ⊆ Ai holds. But then there exist a ∈ Ai ∩ Aj , b ∈
Ai ∩Aj , c ∈ Ai ∩Aj and d ∈ Ai ∩Aj . Furthermore, because each component contains
at least one blue edge, there are blue edges (xi, yi) ∈ (Xi×Yi) and (xj , yj) ∈ (Xj×Yj)
that have to be connected by an edge in order to have them within distance 2. If xixj
is an edge, then xixjb forms a triangle. Similarly, if xiyj , yiyj or xjyi is an edge then
xiyja, yiyjd or xjyic is a triangle, respectively. Contradiction.

It follows that we can reorder the components by inclusion, so that Ak+1 ⊆ Ak+2 ⊆
. . .. Now we are ready to show that GB is bipartite, on parts X :=

⋃
i≥k+1Xi and

Y :=
⋃
i≥k+1 Yi. Suppose X is not a stable set. Then there are x1, x2 ∈ X that form
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v

NH(v)

GT

NG\H(v)

X1 Y1

X2 Y2

Figure 4.2: The structure described in Theorem 4.1.5. Blue edges are in H, red
edges are not in H and black edges could be either. In this picture, HT ⊆ GT has
two (blue) connected components, induced by X1 ∪ Y1 respectively X2 ∪ Y2. The blue
neighbourhood NH(v) is partitioned into two sets A1 (its left two vertices) and A1

(the remaining four vertices on the right), such that X1 is complete to A1 and Y1 is
complete to A1. The neighbourhoods of X2 and Y2 induce another partition of NH(v).
Not all edges are depicted here. In particular, we have left out the (possibly red) edges
inside GT that ensure that all of its blue edges are within distance 2.
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an edge, where x1 ∈ Xi and x2 ∈ Xj for some i ≤ j. Since Ø 6= Ai ⊆ Aj , there must
be a triangle in x1x2Ai. Contradiction. Similarly, suppose Y is not a stable set. Then
there are y1, y2 ∈ Y that form an edge, where y1 ∈ Yi and y2 ∈ Yj for some i ≤ j.
Since Ø 6= Aj ⊆ Ai, there must be a triangle in y1y2Aj . Contradiction.

4.3 Multigraphs without C5

In this section we prove Theorem 4.1.6. We actually prove the following slightly
stronger lemma, which generalizes Lemma 4.2.1.

Lemma 4.3.1. If G is a C5-free multigraph and H is a sub(multi)graph of G such that

E(H) is a clique in L(G)2, then |E(H)| ≤ ∆(H) · (σG(H)−∆(H)) ≤ σG(H)2

4 .

Proof of Lemma 4.3.1.
Let H be a subgraph of G whose edges form a maximum clique in L(G)2. Let v ∈ V (G)
be a vertex that maximizes |NH(v)|. Note that since H is a multigraph, ∆(H) may be
strictly larger than |NH(v)|.

We may assume that |NH(v)| ≥ 2. Indeed, if |NH(v)| = 1 then we can fix an
edge uv ∈ E(H) of maximum Ore-degree σG(H). Note that the multiplicity of this
edge is equal to ∆(H). Each vertex in (NG(u) ∪NG(v)) \ {u, v} is incident to at most
∆(H) edges of H, and there are at most σG(H) − 2∆(H) such vertices. Therefore
|E(H)| ≤ ∆(H) + (σG(H)− 2∆(H)) ·∆(H) ≤ ∆(H) · (σG(H)−∆(H)), as desired.

Now let E∗ ⊆ E(H) denote the set of those edges st ∈ E(H) for which s, t /∈ NG(v).
Let st ∈ E∗. Then for all u ∈ NH(v), vu must be within distance 2 of st, so either
us ∈ E(G) or ut ∈ E(G). Without loss of generality, us ∈ E(G). Because G has no
C5 and |NH(v)| ≥ 2, it follows that t is anticomplete to NH(v)\ {u}, so in fact s is
complete to NH(v) and t is anticomplete to NH(v). We derived this for all st ∈ E∗, so
there exists a subset S ∈ V (H) such that

(i) each edge in E∗ has an endpoint in S and

(ii) S is complete to NH(v).

Since each edge of H is either in E∗ (and thus has an endpoint in S) or has an
endpoint in NG(v), we can cover E(H) with the following three subsets:

ES := {e ∈ E(H) | e has an endpoint in S} ,
E1 := {e ∈ E(H) | e has an endpoint in NG(v)\NH(v)} , and

E2 := {e ∈ E(H) | e has an endpoint in NH(v) but not in S} .
Each vertex is incident to at most ∆(H) edges of H, so |ES | ≤ ∆(H) · |S| and
|E1| ≤ ∆(H) · |NG(v)\NH(v)| ≤ ∆(H) · (degG(v) − ∆(H)). To bound E2 we need
that, by property (ii), each vertex x ∈ NH(v) is incident to at most degG(x) − |S|
edges that are not incident to S. Thus, |E2| ≤

∑
x∈NH(v) (degG(x)− |S|) ≤ ∆(H) ·

(σG(H)− degG(v)− |S|). In conclusion,

|E(H)| ≤ |ES |+ |E1|+ |E2| ≤ ∆(H) · (σG(H)−∆(H)).

Note that the right hand side is maximized for ∆(H) = dσG(H)/2e, so |E(H)| ≤
σ2
G(H)/4.
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4.4 Without an even cycle

4.4.1 Without C4

In this section we prove Theorem 4.1.7. We proceed by case analysis. In subcases 2.1.2,
2.2.1 and 2.2.2.2 we can reduce to the case of the neighbourhood of a triangle, which
constitutes exactly the extremal hairy clique. In the other cases, we derive bounds that
are of smaller order 2∆.

Proof of Theorem 4.1.7.
We will use the following notation. Let H be a blue subgraph of G whose edges

form a maximum clique in L(G)2. Thus, bounding ω(L(G)2) is equivalent to bounding
|E(H)|. In this subsection, we write N(x) for the neighbourhood of a vertex x with
respect to G. Choose an edge e := uv in H. We define the following vertex subsets:
Au := N(u)\ {v} and Av := N(v)\ ({u} ∪N(u)). For short we will write A := Au∪Av
for the neighbourhood of uv and we also need the second-order neighbourhood B :=
N(A)\ (A ∪ {u, v}).

For any disjoint X,Y ⊂ V (G), we write EX := E(H[X]) and we write EX,Y for
the set of edges in H between X and Y . Similarly, for a vertex x and a set Y , we write
Ex,Y for the set of edges in H between x and Y . For vertices x, y ∈ V (G), y is said to
be a blue neighbour of x if xy ∈ E(H).

Note that the edges of H can be decomposed as a disjoint union, as follows.

EV (H) = Eu,A ∪ Ev,A ∪ EAu,B ∪ EAv,B ∪ EA ∪ {e} .
We will use the following claim a few times.

Claim. |EA| ≤ 1.

Proof. If |EA| ≥ 2, then G[A] must contain a 2−path, which forms a C4 with u and/or
v.

We now start the case analysis.

Case 1 No vertex in A has ≥ 2 blue neighbours in B.
The first thing to notice is that Au and Av each contain at most 3 vertices with a

blue edge to B. Indeed, if there are four such vertices x1, . . . , x4 with blue neighbours
y1, . . . , y4 ∈ B respectively, then the (yi)1≤i≤4 must be pairwise distinct to prevent a C4.
Therefore the blue edges (xiyi)1≤i≤4 are pairwise at distance exactly 2. There can be at
most 2 edges in G[x1, x2, x3, x4] and these must be nonincident, for otherwise they form
a C4 with v. Say these edges are x1x2 and x3x4 (or a subset thereof). Then y1y2y2y4

is a C4, contradiction. Second, it cannot be that both |Ev,A| ≥ 2 and |EAu,B | ≥ 2.
Indeed, otherwise there are two vertices in NH(v) that must be complete to two vertices
in B ∩ NH(Au), thus forming a C4, contradiction. So |Ev,A| + |EAu,B | ≤ ∆ (here we
also use our assumption that ∆ ≥ 4). And similarly, |Eu,A|+ |EAv,B | ≤ ∆. It follows
that

|EV (H)| ≤ |Ev,A|+ |EAu,B |+ |Eu,A|+ |EAv,B |+ |EA|+ | {uv} |
≤ ∆ + ∆ + 1 + 1 = 2∆ + 2. (4.2)
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This is bounded from above by 3(∆− 1) if ∆ ≥ 5. To conclude the same for the case
∆ = 4, we need to reduce the bound in equation (4.2) by 1.

If |EA| = 0, then we get the desired improvement for free. If, on the other hand,
EA is nonempty, then its unique edge ab has both endpoints in either N(u)\N(v) or
in N(v)\N(u), (otherwise abuv would form a C4). Wlog, assume ab is induced by
N(u)\N(v). In that case it follows that Ev,A = Ø (or otherwise a blue neighbour of v
in A would have to be adjacent to a or b, forming a C4.)

But then |Ev,A|+ |EAu,B | ≤ 0 + ∆− 1, so we have again reduced the upper bound
of equation (4.2) by 1, as desired.

Case 2 At least one vertex in A has ≥ 2 blue edges to B. Wlog let x ∈ Au be such
a vertex and let x∗1, x

∗
2 denote two of its blue neighbours in B.

• Case 2.1. x is the only vertex in Au that has a blue edge to B.

– Case 2.1.1. vx /∈ E(G).

Suppose there exists vy ∈ Ev,Av . Then y 6= x because vx /∈ E(G). Also,
yx /∈ E(G) because otherwise uvyx would be a C4. So y must be adjacent to
the two blue neighbours x∗1, x

∗
2 of x in B, in order to have vy within distance

2 of xx∗1 and xx∗2. But then xx∗1x
∗
2y forms a C4. We conclude that

Ev,Av = Ø. (4.3)

We now show that it is impossible that both |Eu,Au | ≥ 2 and |EAv,B | ≥ 1.
Indeed, suppose there are x1, x2 ∈ Eu,Au and a blue neighbour y∗ ∈ B
of some y ∈ Av. Since uy, uy∗, x1y, x2y /∈ E(G) while yy∗ must be within
distance two of both ux2 and ux1, it follows that y∗x1, y

∗x2 ∈ E(G), yielding
the four-cycle ux1x2y

∗. Contradiction.

If |EAv,B | = 0 then |EV (H)| ≤ |NH(u) ∪ NH(x)| + |EA| ≤ (2∆ − 1) + 1 ≤
3(∆− 1), as desired. So we may from now on assume that

|Eu,Au | ≤ 1. (4.4)

Next, we want to show that |EAv,B | ≤ 4. Suppose for a contradiction that
|EAv,B | ≥ 5.

Suppose first that there exists y ∈ Av with (at least) three blue neigh-
bours y∗1 , y

∗
2 , y
∗
3 in B. Recall that x∗1, x

∗
2 ∈ B are two blue neighbours of

x. Since {x∗1, x∗2} has at most one element in common with {y∗1 , y∗2 , y∗3}
(otherwise C4) we may wlog assume that {x∗1, x∗2} ∩ {y∗1 , y∗2} = Ø. If
xy∗1 , xy

∗
2 , yx

∗
1, yx

∗
2 /∈ E(G), then {x∗1, x∗2}must be complete to {y∗1 , y∗2}, yield-

ing a C4. So wlog xy∗1 ∈ E(G). This implies xy∗2 , yx
∗
1, yx

∗
2 /∈ E(G) (otherwise

there is a C4 containing x and y). So in order to have yy∗2 within distance
two of xx∗1 and xx∗2, we must have x∗1y

∗
2 , x
∗
2y
∗
2 ∈ E(G), yielding xx∗1y

∗
2x
∗
2 as

a C4. Contradiction. So we have derived that each y ∈ Av has at most two
blue neighbours in B.
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Now suppose that some vertex y12 ∈ Av has two blue neighbours y∗1 , y
∗
2 in B.

By the argument in the previous paragraph, we may exclude the possibilities
| {x∗1, x∗2} ∩ {y∗1 , y∗2} | ∈ {0, 2}, so wlog x∗2 = y∗2 .

Additionally suppose there is another vertex y34 ∈ Av with two blue neigh-
bours y∗3 , y

∗
4 in B. By the same argument, one of {y∗3 , y∗4} is equal to one of

{x∗1, x∗2}. But x∗2 = y∗2 /∈ {y∗3 , y∗4} (otherwise there is a C4 containing y∗2 and
v), so wlog y∗4 = x∗1. Since we assumed that |EAv,B | ≥ 5, there is yet another
vertex y5 ∈ Av with (at least) one neighbour y∗5 ∈ B. Since y5y

∗
5 must be

within distance two of xx∗1 and xx∗2 it follows that xy∗5 ∈ E(G). Since (G[A])
does not contain a 2−path (otherwise C4), at least one of y5y12, y5y34 is not
an edge. Wlog y5y12 /∈ E(G). Then, in order to have y5y

∗
5 within distance

two of y12y
∗
2 and y12y

∗
1 , we must either have y∗5y12 ∈ E(G) (in which case

y∗5xy
∗
2y12 is a C4) or y∗5y

∗
1 , y
∗
5y
∗
2 ∈ E(G) (in which case y∗5y

∗
1y12y

∗
2 is a C4).

Contradiction.

Thus we have derived that y12 is the only vertex in Av with two blue
neighbours in B (namely y∗1 and y∗2). Since we assumed |EAv,B | ≥ 5,
there are three other vertices y3, y4, y5 ∈ Av with unique blue neighbours
y∗3 , y

∗
4 , y
∗
5 ∈ B, respectively. Since G[A] does not contain a 2−path, the com-

plement of the graph induced by Y := {y12, y3, y4, y5} contains a C4. This
implies there is a C4 in the graph induced by {y∗1 , y∗2 , y∗3 , y∗4 , y∗5}, the set of
blue neighbours of Y in B. Contradiction.

Thus, we have derived that no vertex in Av has more than one blue neigh-
bour in B. Now let y1, . . . , y5 ∈ Av be vertices with respective unique blue
neighbours y∗1 , . . . , y

∗
5 ∈ B. Since G[A] does not contain a 2−path, the

complement of the graph induced by {y1, y2, y3, y4, y5} contains a C4. This
implies there is a C4 in the graph induced by {y∗1 , y∗2 , y∗3 , y∗4 , y∗5}. Contradic-
tion.

This concludes our proof that

|EAv,B | ≤ 4. (4.5)

From (4.3), (4.4) and (4.5) it now follows that

|EV (H)| ≤ |Eu,Au |+ | {uv} |+ |Ex,B |+ |EAv,B |+ |EA|
≤ 1 + 1 + (∆− 1) + 4 = ∆ + 5

≤ 3(∆− 1).

– Case 2.1.2. vx ∈ E(G)
Suppose there exists an edge yy∗ ∈ EAv,B , with y ∈ Av. Then absence of
C4−s dictates that y is not adjacent to x or any of its blue neighbours in B.
Therefore y∗ is adjacent to all blue neighbours of x in B, of which there are at
least 2 by assumption. But then these neighbours form a C4 with x and y∗.
Contradiction. So EAv,B = Ø and therefore all edges of H are incident to
the triangle uxv. So |EV (H)| = |E(G[NH(u)∪NH(x)∪NH(v)])| ≤ 3(∆−1).
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• Case 2.2. There is another vertex x2 in Au that has a blue edge to B.
Note that in this case xx2 ∈ E(G), for otherwise there would be a C4 in the graph
induced by u, x, x2 and the blue neighbours of x and x2 in B. Note furthermore
that there cannot be a third vertex x3 ∈ Au that has a blue edge to B, for
otherwise the same argument yields xx3 ∈ E(G) so that x2xx3u would yield a
C4.

– Case 2.2.1. vx /∈ E(G)
First, suppose there exists a blue edge vy ∈ Ev,A. Then y 6= x (by assump-
tion) and y 6= x2 and yx /∈ E(G) (for otherwise uvyx is a C4). Since vy must
be within distance two of the (blue) edges in Ex,B , it follows that y must be
adjacent to both blue neighbours x∗1, x

∗
2 of x in B. But then xx∗1x

∗
2y forms

a C4. Contradiction. So we conclude that Ev,A = Ø. Second, suppose there
is an edge yy∗ ∈ EAv,B , with y ∈ Av and y∗ ∈ B. Let z∗1 , z

∗
2 be two blue

neighbours of x in B and let z∗3 be a blue neighbour of x2 in B. Recall that
xx2 ∈ E(G) and, as before, y /∈ {x, x2} and yx, yx2 /∈ E(G). So in order
to have yy∗ within distance 2 of xz∗1 , xz

∗
2 and x2z

∗
3 , we must have for all

i ∈ {1, 2, 3} that either y∗z∗i ∈ E(G) or y∗ = z∗i , and y∗ can be equal to only
one of the z∗i . If y∗ = z∗3 then xz∗1z

∗
2y
∗ will form a C4. On the other hand,

if (wlog) y∗ = z∗1 , then xy ∗ z∗3x2 forms a C4. Contradiction. We conclude
that EAv,B must be empty too. It follows that all edges of H are indicent
to the triangle uxx2, so |EV (H)| ≤ 3(∆− 1).

– Case 2.2.2. vx ∈ E(G)
By the argument of case 2.1.2, EAv,B = Ø.

∗ Case 2.2.2.1. Ev,Av 6= Ø.
Let vy ∈ Ev,Av and x2x

∗
2 ∈ EAu,B . Since x2y, vx2 /∈ E(G) (otherwise

uvyx2 or uvx2x is a C4), we must have yx∗2 ∈ E(G). This holds for all
such pairs, so in order to prevent a C4, we must have |Ev,Av |+ |Ex2,B | ≤
2. So |EV (H)| ≤ |Ev,Av | + |Ex2,B | + |NH(x) ∪ NH(u)| + |EAv,B | ≤
2 + (2∆− 1) + 0 = 2∆ + 1. This is bounded from above by 3(∆− 1) if
∆ ≥ 4, which holds in this subcase because x is adjacent to u, v, x2 and
its ≥ 2 neighbours in B.

∗ Case 2.2.2.2. Ev,Av = Ø.
In this case all edges of H are incident to the triangle uxx2, so |EV (H)| ≤
3(∆− 1).

4.4.2 Without three consecutive cycles

Proof of Theorem 4.1.9 If ∆ = 1 then ω(L(G)2) = 1 so we may assume that ∆ ≥ 2.
We may also assume that ∆ ≥ 3, because otherwise G is a path or a cycle, or a vertex-
disjoint union of such graphs. For all such graphs, ω(L(G)2) ≤ 5 ≤ l · (∆ − 1) + 2,
since by assumption l ≥ 3. If G is a fivecycle, then k ≥ 3 and ω(L(G))2 = 5. If G is a
four-cycle then k ≥ 2 and ω(L(G)2) = 4. Otherwise ω(L(G)2) ≤ 3. In all these cases,
ω(L(G)2) ≤ k · (∆− 1) + 2
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For ∆ ≥ 3, we will start with the proof for forbidden paths, and then adapt the
arguments slightly to derive the result for forbidden cycles. Let H be a subgraph of G
whose edges form a maximum clique in L(G)2.

Write F = E(H). Note that |F | = ω(L(G)2) > ∆, for otherwise the conclusion
of the theorem is already satisfied. It follows that G contains a path P4 = x1y1x2y2

that starts and ends on edges x1y1, x2y2 from F . Indeed, let e1 and e2 be edges of F .
If they are not incident to eachother, then there must be an edge between them and
we have obtained the desired P4. So we may assume that all edges of F are pairwise
incident and in particular we can write e1 = xy and e2 = yz. At most ∆ edges meet
in y, so F contains an edge e3 that is not incident to y and therefore e3 is incident to
x. If e3 = xq 6= xz then qxyz forms the desired P4. Otherwise xyz forms a triangle
of edges from F . Since |F | ≥ ∆ + 1 ≥ 4, there is a fourth edge in F incident to the
triangle, again yielding a P4.

Now define F1 = F\ ({ edges incident to y1 or x2} ∪ x1y2), a path W1 = y1x2 and
a longer ‘preliminary’ path W ∗1 = x1y1x2y2, which is the P4 whose existence we derived
above.

In general, after the i−th iteration of the algorithm described below, we will obtain
a path Wi = y1 . . . xi and an extended preliminary path W ∗i := x1Wiyi whose first
and final edges x1y1, xiyi are elements of F . We also have a set Fi of unused-but-still-
useful clique-edges, which we will set equal to F\ ({ edges incident to Wi} ∪ x1yi). The
construction above shows this is true for i = 1. To show it is true in the (i + 1)-th
iteration (i ≥ 1), we proceed as follows.

If Fi is nonempty, choose an edge ei+1 = xi+1yi+1 ∈ Fi.

• Case 1. Suppose ei+1 is incident to either the first vertex (x1) or the last vertex
(yi) of W ∗i . Assume without loss of generality that it is incident to yi, and that
yi = xi+1. Then we add ei+1 to our preliminary path; we set Wi+1 = Wixi+1

and W ∗i+1 = Wixi+1yi+1. Note that (by construction of Fi) yi is the only vertex
in W ∗i that is incident to ei+1, so W ∗i+1 is a path as well.

• Case 2. Suppose that Case 1 does not apply, so that ei+1 is not incident to x1

or yi. Since ei+1 ∈ Fi, it follows that ei+1 is not incident to xiyi. Therefore there
must be an edge e∗ between ei+1 and xiyi. Wlog, e∗ is incident to xi+1, so we
have xixi+1 ∈ E(G) or yixi+1 ∈ E(G).

– Case 2.1. If xixi+1 ∈ E(G). Then we again set Wi+1 = Wixi+1 and
W ∗i+1 = Wixi+1yi+1. Note that Wi+1 6= W ∗i .

– Case 2.2. Else yixi+1 ∈ E(G). Then we set Wi+1 = Wiyixi+1 and W ∗i+1 =
Wiyixi+1yi+1 = W ∗i xi+1yi+1.

Finally, update Fi = F\ ({ edges incident to Wi+1} ∪ x1yi+1).
We keep iterating until, after the final iteration I, the set FI is empty. Since

FI = F\ ({ edges incident to WI} ∪ x1yI)

and because the number of edges incident to WI is at most (∆−1) · |WI |+ 1, it follows
that 0 = |FI | ≥ |F | − 2− (∆− 1) · |WI |.
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Because G is Pk+3−free, our constructed path W ∗I cannot be too large. More
precisely, we must have k + 2 ≥ |W ∗I | = |WI |+ 2, and therefore

ω(L(G)2) = |F | ≤ (∆− 1) · |WI |+ 2 ≤ (∆− 1) · k + 2.

This concludes the proof for paths. As for cycles, we need to extend the argument
slightly.

Suppose ω(L(G)2) = |F | ≥ l · (∆ − 1) + 3. Then W ∗I is a path on |WI | + 2 ≥
|F |−2
∆−1 + 2 ≥ l + 2 + 1

∆−1 vertices. Note that in the i−th iteration, the order of the
path W ∗i is increased by either 1 or 2. Therefore there exists a j ≤ I such that
|W ∗j | ∈ {l + 2, l + 3}.

From now on, let’s call the edges of F blue and the edges in E(G)\F red. First we
derive that it suffices to show the existence of a Pl+3 that starts and ends on blue edges.
Suppose G has a path A of order l+3 ≥ 6 that starts with a blue edge a1a2 and ends on
another blue edge al+2al+3. These (non-incident) blue edges must be within distance
2, so there must be an edge between them that isn’t part of A. If a1al+3 ∈ E(G), then
a1a2 . . . al+3 is a Cl+3. Similarly, if a1al+2 ∈ E(G) or a2al+3 ∈ E(G), then there is a
Cl+2. Finally, if a2al+2 ∈ E(G), then there is a Cl+1. So G contains a cycle of order
l + 1, l + 2 or l + 3, which is not allowed; contradiction.

So we may assume that |W ∗j | = l + 2, and |W ∗j+1| = l + 4. To finish the proof, we
will derive that G then contains another path of order l + 3, starting and ending on
blue edges.

Write W ∗j = w1 . . . wl+2. First, since |W ∗j+1| − |W ∗j | = 2, we must have that
W ∗j+1 = W ∗j wl+3wl+4, where wl+2wl+3 is a red edge and wl+3wl+4 is blue. Second,
since w1w2 and wl+3wl+4 are at distance 2, there is an edge e∗ between them. From
this observation, we obtain the desired Pl+3 unless e∗ = w1wl+4. Third, w1w2 and
wl+1wl+2 must be at distance 2 from eachother, so they are connected by an edge e∗∗

that is not part of W ∗j . This yields a forbidden Cl+2 or Cl+1, unless e∗∗ = w2wl+1.
Fourth, note that wlwl+1 is red, for otherwise wl+3wl+4w1w2 . . . wlwl+1 would yield
the desired Pl+3.

In summary, we have obtained the cycle Γ := w1+1 . . . wl+4, where w1w2, wl+1wl+2

and wl+3wl+4 are blue, and wlwl+1 is red. Furthermore, it holds that w2wl ∈ E(G).

Next, we are going to focus on the edge e∗∗∗ := wl−1wl. Since l ≥ 3, this edge is
different from the first edge w1w2. Suppose that e∗∗∗ is blue.

Then wlwl−1 . . . w2wl+1wl+2wl+3wl+4 forms a Pl+3 starting and ending on blue
edges. Suppose on the other hand that e∗∗∗ is red. Because e∗∗∗ and wlwl+1 are con-
secutive red edges of W ∗j+1, it follows from the construction of the paths (W ∗i )1≤i≤j+1

that there must be a pending blue edge wlwp that is only incident to Γ in the vertex
wl. (This pending edge used to be the blue end-edge of some preliminary path W ∗i ,
i < j.) Now wpwlwl−1 . . . w2w1wl+4wl+3 forms a Pl+3, starting and ending on blue
edges.
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w1 w3

w2

wl−1 wl

wp

wl+1

wl+2

wl+3wl+4

Figure 4.3: The subgraph constructed in the final part of the proof of Theorem 4.1.9,
yielding a path of order l+ 3 starting and ending on blue edges, which in turn implies
the existence of a Cl+1, Cl+2 or Cl+3. The black edges are either red or blue

4.5 Bipartite graphs without an even cycle.

4.5.1 A large girth bipartite graph of large strong chromatic
index

In this subsection we prove Lemma 4.1.10. The argument is taken almost literally from
[82], with a few adaptations to ensure the obtained random graph is bipartite.

Proof of Lemma 4.1.10
Let G = G(n, n, p) be a random bipartite graph on parts that are both of order n
and with edge probability p = d/n, where d is sufficiently large and n is sufficiently
large with respect to d. The expected number of cycles of length less than g in G
is upperbounded by gngpg = gdg. So by Markov’s inequality it follows that G has
less than ln(n) cycles of length less than g, asymptotically almost surely. Second, the
probability that G contains an induced matching of size s := 2n

d ln(d) is at most(
n

s

)
n!

(n− s)! · p
s(1− p)s2−s ≤

(en
s
· np · (1− p)s−1

)s
≤

(
O(1) · d2

ln(d)
·
(

1− d

n

)2
n
d ln(d)−1

)s

≤
(
O(1) · d2

ln(d)
· e−2 ln(d)+1

)s
≤
(
O(1)

ln(d)

)s
= o(1).
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So G asymptotically almost surely does not contain an induced matching of size
2n
d ln(d). Third, let A denote the number of edges in G adjacent to the vertices of

degree at least d+ d
ln(d) . Then

E(A) ≤ 2n

2n−1∑
k=d+d/ln(d)

k

(
2n− 1

k

)
pk(1− p)2n−1−k

= 2np(2n− 1)
2n−2∑

k=d+d/ ln(d)−1

(
2n− 2

k

)
pk(1− p)2n−2−k.

The right hand side equals 2np(2n − 1) times the probability that a binomially dis-
tributed random variable with parameters 2n−2 and p is at least d−1+d/ ln(d). By a
standard tail estimate (see eg [5], Appendix A), it follows that E(A) ≤ (2n)2p · 1

d2 = 4n
d .

Applying Markov’s inequality yields P(A ≤ n) ≥ 1 − 4
d . Fourth and finally, note that

the number of edges in G is (1 + o(1))nd, asymptotically almost surely.
We now construct a new graph G∗ by removing from G all the vertices contained

in a cycle of order less than g or having degree at least ∆ = d + d/ ln(d). We proved
that, with positive probability, G∗ has at least (1+o(1))nd−n− (d+d/ ln(d)) · ln(n) =
(1 + o(1))n∆ edges, has girth at least g and contains no induced matching of size
2n
d ln(d) = (2 + o(1))(n/∆) ln(∆). In particular, the stability number of L(G∗)2 is at

least (2 + o(1))(n/∆) ln(∆). This implies that

χ(L(G∗)
2) ≥ |V (L(G∗)2)|

α(L(G∗)2)
≥ (1 + o(1))n∆

(2 + o(1))(n/∆) ln(∆)
=

(
1

2
+ o(1)

)
∆2

ln(∆)
.

To finish the proof, note that by construction ∆ ≥ ∆(G∗).

4.5.2 Bipartite without C4

Proof of Lemma 4.1.12.
Due to Theorem 4.1.3 the Lemma holds for k ≥ ∆ + 1, so we are left with the case
k = 2. Let G be a bipartite graph that is C4−free or P5−free (or both). We need
to show that then ω(L(G)2) ≤ 2∆ − 1, unless ∆ = k = 2 and G is P5−free but not
C4−free, in which case we need to show that ω(L(G)2) ≤ 2∆ = 4.

Let H be a subgraph of G whose edges form a maximum clique in L(G)2. Let
uv ∈ E(H). Note that N(u) ∩N(v) = Ø, for otherwise we have a triangle. Define

D(u) := {x ∈ NG(u)\ {v} | NH(x)\ {u} 6= Ø}

and analogously D(v) := {x ∈ NG(v)\ {u} | NH(x)\ {v} 6= Ø}.
First note that |D(u)| ≤ 1 (and symmetrically, |D(v)| ≤ 1). Indeed, suppose for a

contradiction that |D(u)| ≥ 2. Then there are x1, x2 ∈ NG(u)\ {v} with neighbours
y1 ∈ NH(x1)\ {u} , y2 ∈ NH(x2)\ {u}. Since x1y1, x2y2 ∈ E(H) they are either incident
(in which case y1 = y2 so that ax1y1x2 is a C4 and vux1y1x2 is a P5) or at distance 2
(in which case we may assume by symmetry that x1y2 ∈ E(G), so that ux1y1y2 is a
C4 and y1x1ux2y2 is a P5). Contradiction.
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Second,

if D(u) 6= Ø, then NH(v)\ {u} = Ø (4.6)

(and symmetrically, if D(v) 6= Ø, then NH(u)\ {v} = Ø). Indeed, suppose for a
contradiction that D(u) 6= Ø and NH(v)\ {u} 6= Ø. Then there exist x ∈ NG(u),
y ∈ NH(x)\ {u, v} and z ∈ NH(v)\ {u}. If y = z then uvxz is a C4 and any extra edge
creates a P5. So |E(H)| ≤ 4 and this bound is only attained if ∆ = 2 (this is the only
place where the exceptional case k = ∆ manifests itself). Thus, we may assume that
y 6= z. Since the edges xy, bz are in E(H) and not incident, there is an edge between
them. Since the graph is bipartite, this is not possible without creating a C4 and a P5.
Contradiction.

Now we have all the ingredients to finish the proof with a simple case analysis.
If D(u), D(v) 6= Ø, then by (4.6), uv is the only edge of H incident to {u, v}. So
|E(H)| ≤ | {uv} | + |NH(D(u)\ {u} | + |NH(D(v)\ {v} | ≤ 1 + 2 · (∆ − 1) = 2∆ − 1.
If D(u) 6= Ø, D(v) = Ø, then |E(H)| ≤ |NH(u)| + |NH(D(u))\ {u} | ≤ ∆ + ∆ − 1 =
2∆− 1. Finally, if D(u) = D(v) = Ø, then all edges of H are incident to uv, so again
|E(H)| ≤ 2∆− 1.

4.5.3 Bipartite without even cycle

Proof of Theorem 4.1.13
By Theorem 4.1.3, we may assume throughout that k ≤ ∆. Let G = G[X,Y ] be
bipartite and P2k+1−free. Let H be a subgraph of G whose edges form a maximum
clique in L(G)2, so that |E(H)| = ω(L(G)2. A path in G will be called H-sided if it
starts and ends on edges of H. Given a vertex v ∈ V (G), an H−neighbour of v is a
vertex w ∈ NH(v).

Assume that ω(L(G)2) > max(k∆, 2k(k − 1)). Under this assumption, we want to
derive that for any H−sided path P of order smaller than 2k+ 1, we can find another
H−sided path that has order |P | + 1 or |P | + 2, which is sufficient by the following
claim.

Claim 4.5.1. Suppose that for each H−sided path P in G of order |P | < 2k + 1, we
can find another H−sided path of order |P |+ 1 or |P |+ 2. Then G contains P2k+1 as
a subgraph, and also contains a copy of C2k+2 or C2k.

Proof. Because |E(H)| ≥ 1, there exists anH−sided path of order 2. We can iteratively
extend the length of this path by 1 or 2, ultimately yielding an H−sided path P of
order ∈ {2k + 1, 2k + 2}. In particular, G contains a path of order 2k + 1, as desired.
The first and final edge of P are in H and therefore (also using that |P | ≥ 2k+ 1 ≥ 5)
they must be at distance exactly 2. Since G is bipartite, this implies the existence of a
cycle of order ∈ {|P |, |P | − 2} if |P | is even, and a cycle of order |P | − 1 if |P | is odd.
So G has a cycle of order ∈ {2k, 2k + 2}.

Let P be an H−sided path. For clarity of notation we assume from now on that
P has even order 2l, for some l ≤ k. For paths of odd order < 2k + 1 the arguments
are similar and in fact slightly easier, because the bounds we need are slightly more
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forgiving in that case. Write P := p1p2 . . . p2l.

First, we need to introduce some definitions. Let XP := X ∩ V (P ) = p1p3 . . . p2l−1

and YP := Y ∩V (P ) = p2p4 . . . p2l be the two parts of the bipartite graph induced by P .
A vertex of P will be called r−extravert if its number of H-neighbours outside P is at
least r. For short, we call the vertex extravert if it is 1-extravert. Conversely, a vertex

of P is introvert if all of its H-neighbours are in P . By P
(r)
ext and Pext we denote the

set of r−extravert vertices and extravert vertices respectively, and Pint denotes the set
of introvert vertices. Finally, by Obs(P ) we will denote the set of obsolete edges, which
by definition are those edges of H that are incident to some vertex of P\ {p1, p2l}. We
call them obsolete because they cannot be ‘greedily’ used to extend the order of P .

From now on, suppose for a contradiction that it is not possible to find an H−sided
path of order |P |+ 1 or |P |+ 2. Then the following claims hold.

Claim 4.5.2. The first and final vertex of P are introvert.

Proof. Suppose by symmetry that the first vertex p1 is extravert. Then it has an
H−neighbour p0 outside P , so p0P is an H−sided path of order |P |+1. Contradiction.

Claim 4.5.3. |Obs(P )| > max(k∆, 2k(k − 1).

Proof. Suppose not. Then |Obs(P )| ≤ max(k∆, 2k(k − 1)) < |E(H)|. Therefore there
exists an edge e∗ in H that is not incident to any vertex of P . The final edge e of P
is in H, so e∗ and e must be at distance exactly 2. This implies that we can extend P
to an H−sided path (ending on e∗ rather than e) that is of order |P | + 1 or |P | + 2.
Contradiction.

So in order to arrive at a contradiction, it suffices to show that |Obs(P )| ≤ k∆ or
|Obs(P )| ≤ 2k(k− 1). We will now derive some structural properties of our counterex-
ample.

Claim 4.5.4. Any two extravert vertices in the same part (both in XP or both in YP )
have a common neighbour outside P .

Proof. Indeed, suppose wlog that pi, pj are two extravert vertices inXP , withH−neighbours
qi respectively qj outside P . If qi = qj we are done, so suppose qi 6= qj . The edges piqi
and pjqj need to be within distance 2. Since odd cycles are not allowed in G, it follows
that pipj , qiqj /∈ E(G), so qi or qj must be a common neighbour of pi and pj .

Claim 4.5.5. P contains at most two pairs of consecutive extravert vertices, and if
there are two such pairs pipi+1 and pjpj+1, then they must have different parity, in the
sense that i = j + 1 (mod 2).

Proof. Suppose there are two extravert pairs pipi+1, pjpj+1 of the same parity. Then
wlog i + 1 < j and pi, pj ∈ XP and pi+1, pj+1 ∈ YP . See 4.4. By Claim 4.5.4, pi
and pj have a common neighbour u ∈ Y \YP , and pi+1 and pj+1 have a common
neighbour v ∈ X\XP . Therefore we can replace the subpath P ∗ := pipi+1, . . . pjpj+1

of P by piupjpj−1 . . . pi+2pi+1vpj+1, which uses the same vertices as P ∗ and two extra
vertices u, v outside of P . Thus, we have constructed an H−sided path of order |P |+2.
Contradiction.
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The next claim is arguably the heart of the argument.

Claim 4.5.6. There are at most l extravert vertices.

Proof. Consider the vertex pairs (p2, p3), (p4, p5), . . . (p2l−2, p2l−1). By Claim 4.5.2, all
extravert vertices are contained in the union of these l − 1 pairs. So if there are more
than l extravert vertices, then by the pigeonhole principle at least two pairs entirely
consist of extravert vertices. We have obtained two same-parity pairs of consecutive
extravert vertices, contradicting Claim 4.5.5.

From now on, let r ∈ N≥0 be the maximal integer (if it exists)
such that there are nonadjacent r−extravert vertices s, t with s ∈ XP and t ∈ YP .

Claim 4.5.7. The integer r is well-defined.

Proof. Suppose r does not exist. Then the vertices of P induce a complete bipartite
graph, with parts XP and YP . By Claim 4.5.6 we have |Pext| ≤ l, and therefore
|Obs(P )| ≤ |XP | · |YP | + |Pext| · (∆ − min(|XP |, |YP |)) = l2 + l · (∆ − l) ≤ k · ∆,
contradicting Claim 4.5.3.

The next claim follows directly from the definition of r.

Claim 4.5.8. The graph induced by P
(r+1)
ext is complete bipartite.

For vertices a, b in P , let dP (a, b) denote the number of edges in the subpath of P
having endpoints a and b. We will call dP (a, b) the P -distance between a and b.

Claim 4.5.9. Let q ∈ N≥1. Let a ∈ XP , b ∈ YP be two non-adjacent q−extravert
vertices. Then they are at P -distance at least 2q + 1.

Proof. Suppose for a contradiction that d := dP (a, b) + 1 ≤ 2q. Note that d is the
(even) number of vertices in the subpath of P between (and including) a and b. Let
A := {a1, . . . , aq} denote a subset of the H−neighbours of a in Y \YP . Similarly, let
B := {b1, . . . , bq} denote a subset of the H−neighbours of b in X\XP . See figure 4.4.
Because ab /∈ E(G) and the H−edges aia, bjb should be within distance 2 for all i, j, it
follows that A is complete to B. Therefore there exists a path P ∗ := aa1b1a2b2 . . . aqbqb
of order d+ 2 that only intersects P in a and b. This leads to a contradiction, because
it implies that we can construct an H−sided path of order |P | + 2, by replacing the
order d subpath of P between a and b with the order d+ 2 path P ∗.

With the above claims, we will now complete the proof of Theorem 4.1.13 by de-
riving a contradiction to Claim 4.5.3.

We will partition the vertices of P and estimate the H−edges incident to them

separately. First we need some definitions. Let ix := |P (r+1)
ext ∩XP | and iy := |P (r+1)

ext ∩
YP | be the numbers of (r + 1)−extravert vertices in the parts XP , YP of the bipartite

graph induced by P . Similarly, let jx := |Pext\P (r+1)
ext ∩XP | and jy := |Pext\P (r+1)

ext ∩YP |
be the number of vertices that are extravert but not (r + 1)−extravert, in part XP

respectively YP . Note that the remaining |XP | − ix − jx (resp. |YP | − iy − jy) vertices
in XP (resp. YP ) are introvert.
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An important observation is that we can write Obs(P ) as a disjoint union E1∪E2∪
E3, where

E1 =
{
H-edges incident to P

(r+1)
ext

}
,

E2 =
{
H-edges incident to Pext but not incident to P

(r+1)
ext

}
and

E3 = {H-edges in the graph induced by Pint} .
See figure 4.5.

Recall from Claim 4.5.8 that G[P
(r+1)
ext ] is complete bipartite, so it is efficient to

estimate E1 by summing the degrees (with respect to G) of P
(r+1)
ext and subtracting the

double-counted edges of G[P
(r+1)
ext ]. This yields

|E1| ≤ −
∣∣∣EG[P

(r+1)
ext ]

∣∣∣+
∑

v∈P (r+1)
ext

|NG(v)| ≤ −ixiy + (ix + iy) ·∆. (4.7)

To estimate |E2|, note that it is maximized if each vertex v ∈ Pext\P (r+1)
ext has

exactly r H−neighbours outside G[P ] and is incident to all vertices of the opposite

part that are not in P
(r+1)
ext (and leaving out one single edge from this graph, to comply

with the non-edge that defines r). In this case

|E2| ≤ −
∣∣∣EH [Pext\P (r+1)

ext ]
∣∣∣+

∑
v∈Pext\P (r+1)

ext

∣∣∣NH(v)\P (r+1)
ext

∣∣∣ (4.8)

≤ −jxjy + jx · (r + |YP | − iy) + jy · (r + |XP | − ix).

The size of E3 is maximized if Pint induces a complete bipartite graph, so

|E3| ≤ (|XP | − ix − jx) · (|YP | − iy − jy). (4.9)

Summing estimates (4.7), 4.8) and (4.9), we conclude that

|Obs(P )| = |E1|+ |E2|+ |E3|
≤ (ix + iy) ·∆ + (jx + jy) · r + |XP | · |YP | − ix · |YP | − iy · |XP |
= (ix + iy) · (∆− l) + (jx + jy) · r + l2. (4.10)

If ∆− l ≥ r then (4.10) is maximized for jx + jy = 0, so that ix + iy = |Pext|. This
means that all extravert vertices are in fact (r + 1)−extravert. By Claim 4.5.6,

|Obs(P )| ≤ |Pext| · (∆− l) + l2 ≤ l · (∆− l) + l2 ≤ k ·∆,
a contradiction to Claim 4.5.3. Conversely, if ∆ − l < r then the upperbound on
|Obs(P )| is maximized for ix + iy = 0, so that jx + jy = |Pext|. This means that
none of the extravert vertices is (r + 1)−extravert. By Claim 4.5.6, we again obtain a
contradiction to Claim 4.5.3:

|Obs(P )| ≤ |Pext| · r + l2 ≤ l · (l − 2) + l2 ≤ 2k(k − 1). (4.11)

In the last line, we used that r ≤ l− 2, which follows from Claim 4.5.9 and the fact
that the first and final vertex of P are introvert.
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p1

pi

pi+1

pj

pj+1

p2l

v

u

A B

a

b

XP YP XP YP

Figure 4.4: A depiction of the contradictory path-extensions described by Claim 4.5.5
(left) and Claim 4.5.9 (right). On the right, a and b are non-adjacent 3−extravert
vertices and dP (a, b) = 5. This means that a and b are too close to eachother. Indeed,
by following the green edges (and two blue edges) rather than the red edges, we obtain
an H−sided path of order |P |+ 2.

Figure 4.5: A simplified depiction of the structure described on page 78, in case r = 2.
From top to bottom we have the 3−extravert vertices, the extravert vertices that are
not 3−extravert, and finally the introvert vertices. The three sets on the left are the
sets counted by ix, jx and |XP | − ix − jx. The three sets on the right are counted

by jx, jy and |YP | − iy − jy. The union of the two upper sets equals P
(r+1)
ext and thus

induces a complete bipartite graph.
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4.6 Bounded Hadwiger number

4.6.1 Graphs with bounded Hadwiger number

In this section we prove Theorem 4.1.16.

Proof of Theorem 4.1.16.
Let H be a subgraph of G whose edges represent a maximum clique in L(G)2, so that
ω(L(G)2) = |E(H)|. Let C ⊆ E(H) be a maximum set of edges that are pairwise at
distance precisely two. By contracting each edge in C, we obtain a clique of order |C|,
so G has K|C| as a minor. Therefore |C| ≤ k − 1. By the maximality of C, every
edge of H must be incident to an edge of C. Note that from this we already obtain
ω(L(G)2) = |E(H)| ≤ |C| · (2∆ − 1) ≤ (k − 1)(2∆ − 1). We need to improve on this
bound by roughly a factor two, under the additional assumption that ∆ ≥ 2k − 1.

Let V (C) denote the set of vertices incident to an edge of C. A vertex a ∈ V (C) is
called k−extravert if |NH(a)\V (C)| = k and extravert for short if it is k−extravert for
some k ≥ 1. 1 Consider an edge ab ∈ C, where a is k−extravert and b is l−extravert
for some 0 ≤ k ≤ l. We call a the shy vertex of ab and b the outgoing vertex of ab (and
if k = l we assign an arbitrary vertex of ab to be the shy vertex). Furthermore, we call
the edge ab of type 1 if it satisfies one of the following.

• Both a and b are 1−extravert with a common neighbour in (NH(a) ∩NH(b)) \V (C).

• a is not extravert and b is (≤ 1)−extravert.

We call ab of type 2 if a is not extravert and b is k−extravert for some k ≥ 2. Cor-
respondingly, we call a vertex of type 1 (respectively 2) if it is incident to an edge of
type 1 (respectively 2).

First, we observe that all edges of C are either of type 1 or 2. Indeed, if not, then
there is an edge ab ∈ C such that a is (≥ 1)−extravert and b is (≥ 2)−extravert.
Therefore there exist two distinct vertices p, q /∈ V (C) such that ap, bq ∈ E(H). But
both ap and bq are at distance exactly two from eachother and from the edges in
C\ {ab}, so C ∪ {ap, bq} \ {ab} contradicts the maximality of C.

Second, we note that whenever there is an edge a1a2 ∈ E(H) of H between shy
vertices a1, a2, it must hold that both shy vertices are of type 1. Indeed, let a1b1, a2b2
be the corresponding edges of C and suppose for a contradiction that at least one
of a1b1, a2b2 is of type 2. Then there exist distinct vertices z1, z2 /∈ V (C) such that
z1b1, z2b2 ∈ E(H). Now C∪{z1b1, z2b2, a1a2} \ {a1b1, a2b2} contradicts the maximality
of C.2

1Note that this definition of a k−extravert vertex differs slightly from the definition used in section
4.5.3 !

2Note that this argument fails to forbid edges of H between two shy vertices of type 1, because in
that case we cannot guarantee that z1 6= z2, so that z1b1 and z2b2 may be incident. As a consequence,
we may not be allowed to add both z1b1 and z2b2 to C.
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By the properties derived above, it follows that we can partition E(H) = E1∪E2∪
E3, where

E1 := {e ∈ E(H) | e incident to an outgoing vertex of type 1} ,

E2 := {e ∈ E(H) | e incident to an outgoing vertex of type 2} and

E3 := {a1a2 ∈ E(H) | a1 is shy of type 1 and either a2 /∈ V (C) or a2 is shy of type 1} .
We upper bound each of these edge sets separately. Let ti denote the number of edges
of type i and note that t1 +t2 = |C|. Clearly we have |E2| ≤ t2 ·∆. Since each outgoing
vertex of type 1 is incident to at most 2|C| edges of H, of which at most one is not
induced by V (C), it follows that |E1| ≤ t1 · 2|C| −

(
t1
2

)
. Finally, the shy vertices of

type 1 induce at most
(
t1
2

)
edges, and each shy vertex of type 1 is (≤ 1)−extravert, so

|E3| ≤
(
t1
2

)
+ t1. In conclusion, we obtain

|E(H)| ≤ |E1|+ |E2|+ |E3| ≤ t1 · 2|C| −
(
t1
2

)
+ t2 ·∆ +

(
t1
2

)
+ t1

= t1 · (2|C|+ 1−∆) + |C| ·∆
≤ |C| ·max(∆, 2|C|+ 1).

Since |C| ≤ k − 1 and (by assumption) ∆ ≥ 2k − 1, it follows that ω(L(G)2) =
|E(H)| ≤ |C| ·∆ ≤ (k − 1) ·∆.

Remark. Albeit close to sharp, there is still some room to improve on the upper
bound given in Theorem 4.1.16, since e.g. we disregard some overcounting that could
arise from the edges induced by the outgoing vertices of type 2. Also, we did not use
the fact that if there are many edges in the graph induced by V (C), then Kt is a minor
for some t strictly larger than |C|.

4.6.2 Multigraphs with bounded Hadwiger number

In this section we prove Lemma 4.1.18. Given a multigraph G, let µ(G) denote
the matching number of G (i.e. the size of the largest matching) and let o(G) de-
note the number of components of G that have an odd number of vertices. Accord-
ing to the Tutte-Berge formula [10], it holds for any multigraph G = (V,E) that
µ(G) = 1

2 minU⊆V (|U | − o(G− U) + |V |) . Using this, we can derive Lemma 4.1.18.

Proof of Lemma 4.1.18.
First, note that for every vertex v ∈ G, the graph G − v has at most one component
with an edge. For if there are two components with an edge, then these edges cannot
be within distance two in G. More generally, for any U ⊆ V (G), the graph G− U has
at most one component with an edge.

Second, note that µ(G) ≤ h(G). Indeed, suppose for a contradiction that G has
a matching M of size |M | > h(G). Since there must be an edge between any two
edges e1, e2 ∈ M , contracting each edge of M to a vertex yields a complete graph
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on |M | vertices. Therefore the complete graph on h(G) + 1 vertices is a minor of G;
contradiction.

Let U ⊆ V (G) be a vertex subset such that 1
2 (|U | − o(G− U) + |V |) = µ(G). If

G − U has no edges, then o(G − U) = |V | − |U |, so that µ(G) = |U | and |E(G)| ≤∑
u∈U deg(u) ≤ ∆(G) · |U | ≤ ∆(G) · h(G). So we may assume G−U has a component

with an edge. Let A denote the set of vertices in this (unique) edged component. If
|A| is even then

µ(G) =
1

2
(|U | − o(G− U) + (|U |+ o(G− U) + |A|)) = |U |+ |A|

2
.

On the other hand, if |A| is odd then

µ(G) =
1

2
(|U | − o(G− U) + (|U |+ o(G− U) + |A| − 1)) = |U |+ |A|

2
− 1

2
.

It follows that

|E(G)| ≤ |E[A]|+
∑
u∈U

deg(u) ≤ ∆(G) ·
(
|U |+ |A|

2

)
≤ ∆(G) ·

(
µ(G) +

1

2

)
≤ ∆(G) ·

(
h(G) +

1

2

)
.



Chapter 5

Colouring Jordan regions and
curves

A Jordan region is a subset of the plane that is homeomorphic to a closed disk. Consider
a family F of Jordan regions whose interiors are pairwise disjoint, and such that any
two Jordan regions intersect in at most one point. If any point of the plane is contained
in at most k elements of F (with k sufficiently large), then we show that the elements
of F can be coloured with at most k+ 1 colours so that intersecting Jordan regions are
assigned distinct colours. This is best possible and answers a question raised by Reed
and Shepherd in 1996. As a simple corollary, we also obtain a positive answer to a
problem of Hliněný (1998) on the chromatic number of contact systems of strings. We
also investigate the chromatic number of families of touching Jordan curves. This can
be used to bound the ratio between the maximum number of vertex-disjoint directed
cycles in a planar digraph, and its fractional counterpart.

5.1 Introduction

In this chapter, a Jordan region is a subset of the plane that is homeomorphic to
a closed disk. A family F of Jordan regions is touching if their interiors are pairwise
disjoint. If any point of the plane is contained in at most k Jordan regions of F , then we
say that F is k-touching. If any two elements of F intersect in at most one point, then
F is said to be simple. All the families of Jordan regions and curves we consider are
assumed to have a finite number of intersection points. The first part of this chapter is
concerned with the chromatic number of simple k-touching families of Jordan regions,
i.e. the minimum number of colours needed to colour the Jordan regions, so that
intersecting Jordan regions receive different colours. This can also be defined as the
chromatic number of the intersection graph G(F) of F , which is the graph with vertex
set F in which two vertices are adjacent if and only if the corresponding elements of F
intersect. Recall that the chromatic number of a graph G, denoted by χ(G), is the least
number of colours needed to colour the vertices of G, so that adjacent vertices receive
different colours. The chromatic number of a graph G is at least the clique number of

83
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G, denoted by ω(G), which is the maximum number of pairwise adjacent vertices in
G, but the difference between the two parameters can be arbitrarily large (see [75] for
a survey on the chromatic and clique numbers of geometric intersection graphs).

The following question was raised by Reed and Shepherd [92].

Problem 5.1.1. [92] Is there a constant C such that for any simple touching family
F of Jordan regions, χ(G(F)) ≤ ω(G(F)) + C? Can we take C = 1?

Our main result is the following (we made no real effort to optimize the constant
490, which is certainly far from optimal, our main concern was to give a proof that is
as simple as possible).

Theorem 5.1.2. For k ≥ 490, any simple k-touching family of Jordan regions is
(k + 1)-colourable.

Note that apart from the constant 490, Theorem 5.1.2 is best possible. Figure 5.1
depicts two examples of simple k-touching families of Jordan regions of chromatic
number k + 1.

k k − 1 k − 1

Figure 5.1: Two simple k-touching families of Jordan regions with chromatic number
k + 1.

It was proved in [41] that every simple k-touching family of Jordan regions is 3k-
colourable (their result is actually stated for k-touching families of strings, but it easily
implies the result on Jordan regions). We obtain the next result as a simple conse-
quence.

Corollary 5.1.3. Any simple k-touching family of Jordan regions is (k+327)-colourable.

Proof. Let F be a simple k-touching family F of Jordan regions. If k ≤ 163 then F can
be coloured with at most 3k ≤ k+327 colours by the result of [41] mentioned above. If
164 ≤ k ≤ 489, then F is also 490-touching, and it follows from Theorem 5.1.2 that F
can be coloured with at most 491 ≤ k+ 327 colours. Finally, if k ≥ 490, Theorem 5.1.2
implies that F can be coloured with at most k + 1 ≤ k + 327 colours.

Observe that for a given simple touching family F of Jordan regions, if we denote by
k the least integer so that F is k-touching, then ω(G(F)) ≥ k, since k Jordan regions
intersecting some point p of the plane are pairwise intersecting. Therefore, we obtain
the following immediate corollary, which is a positive answer to the problem raised by
Reed and Shepherd.
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Corollary 5.1.4. For any simple touching family F of Jordan regions, χ(G(F)) ≤
ω(G(F)) + 327 (and χ(G(F)) ≤ ω(G(F)) + 1 if ω(G(F)) ≥ 490).

Note that the bound χ(G(F)) ≤ ω(G(F)) + 1 is also best possible (as shown by
Figure 5.1, right).

It turns out that our main result also implies a positive answer to a question raised
by Hliněný in 1998 [60]. A string is the image of some continuous injective function
from [0, 1] to R2, and the interior of a string is the string minus its two endpoints. A
contact systems of strings is a set of strings such that the interiors of any two strings
have empty intersection. In other words, if c is a contact point in the interior of a string
s, all the strings containing c distinct from s end at c. A contact system of strings
is said to be one-sided if for any contact point c as above, all the strings ending at c
leave from the same side of s (see Figure 5.2, left). Hliněný [60] raised the following
problem:

Problem 5.1.5. [60] Let S be a one-sided contact system of strings, such that any
point of the plane is in at most k strings, and any two strings intersect in at most one
point. Is it true that G(S) has chromatic number at most k+ o(k)? (or even k+ c, for
some constant c?)

Figure 5.2: Turning a one-sided contact system of strings into a simple touching family
of Jordan regions.

The following simple corollary of Theorem 5.1.2 gives a positive answer to Prob-
lem 5.1.5.

Corollary 5.1.6. Let S be a one-sided contact system of strings, such that any point
of the plane is in at most k strings, and any two strings intersect in at most one point.
Then G(S) has chromatic number at most k + 127 (and at most k + 1 if k ≥ 490).

Proof. Assume first that k ≤ 363. It was proved in [41] that G(S) has chromatic
number at most

⌈
4
3k
⌉

+ 6, so in this case at most k+ 127, as desired. Assume now that
k ≥ 364. Let F be obtained from S by thickening each string s of S, turning s into
a (very thin) Jordan region (see Figure 5.2, from left to right). Since S is one-sided,
each intersection point contains precisely the same elements in S and F , and therefore
G(S) and G(F) are equal, while F is a simple k-touching family of Jordan regions. If
364 ≤ k ≤ 489, then F is also 490-touching and it follows from Theorem 5.1.2 that
G(S) = G(F) has chromatic number at most 491 ≤ k + 127. Finally, if k ≥ 490, then
by Theorem 5.1.2, G(S) = G(F) has chromatic number at most k + 1, as desired.
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A Jordan curve is the boundary of some Jordan region of the plane. We say that a
family of Jordan curves is touching if for any two Jordan curves a, b, the curves a and
b do not cross (equivalently, either the interiors of the regions bounded by a and b are
disjoint, or one is contained in the other). Moreover, if any point of the plane is on at
most k Jordan curves, we say that the family is k-touching. Note that unlike above, the
families of Jordan curves we consider here are not required to be simple (two Jordan
curves may intersect in several points). Note that previous works on intersection of
Jordan curves have usually considered the opposite case, where every two curves that
intersect also cross (see for instance [66] and the references therein).

Let F be a k-touching family of Jordan curves. For any two intersecting Jordan
curves a, b ∈ F , let D(a, b) be the set of Jordan curves c distinct from a, b such that the
(closed) region bounded by c contains exactly one of a, b. The cardinality of D(a, b)
is called the distance between a and b, and is denoted by d(a, b). Note that since F is
k-touching, any two intersecting Jordan curves are at distance at most k − 2.

Given a k-touching family F , the average distance in F is the average of d(a, b),
over all pairs of intersecting Jordan curves a, b ∈ F . We conjecture the following.

Conjecture 5.1.7. For any k-touching family F of Jordan curves, the average distance
in F is at most k

2 .

It was proved by Fox and Pach [46] that each k-touching family of strings is (6ek+1)-
colourable, which directly implies that each k-touching family of Jordan curves is
(6ek + 1)-colourable (note that 6e ≈ 16.31). We show how to improve this bound
when the average distance is at most αk, for some α ≤ 1.

Theorem 5.1.8. Let F be a k-touching family of Jordan curves, such that the average
distance in F is at most αk, for some constant 0 ≤ α ≤ 1. Then the chromatic number

of F is at most 6eδ

δ+δ2(1−α) k, where δ = δ(α) = 1
2−2α (1−2α+

√
4α2 − 8α+ 5) for α < 1

and δ(1) = 1.

Note that δ(1) = 1 = limα→1
1

2−2α (1 − 2α +
√

4α2 − 8α+ 5). Theorem 5.1.8 has
the following direct corollary.

Corollary 5.1.9. Let F be a k-touching family of Jordan curves, such that the average
distance in F is at most αk. Then F is β k-colourable, where

β =

 12.76 if α ≤ 3/4,
10.22 if α ≤ 1/2,
8.43 if α ≤ 1/4.

By Corollary 5.1.9, a direct consequence of Conjecture 5.1.7 would be that every
k-touching family of Jordan curves is 10.22 k-colourable.

For any k-touching family of Jordan curves, the average distance is at most k.
Theorem 5.1.8 implies that every family of Jordan curves is 6ek-colourable, which
is the bound of Fox and Pach [46] (without the +1). To understand the limitation of
Theorem 5.1.8 it is interesting to consider the case α = o(1). Then δ tends to 1

2 (1+
√

5),
and we obtain in this case that F is 7.14 k-colourable. A particular case is when α = 0.
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This is equivalent to say that any two intersecting Jordan curves are at distance 0,
and therefore the family F of Jordan curves can be turned into a k-touching family
of Jordan regions (here and everywhere else in this manuscript, it is crucial that the
curves are pairwise non-crossing). Note that it was proved in [6] (see also [41]) that
k-touching families of Jordan regions are ( 3k

2 + o(k))-colourable.

In order to motivate Conjecture 5.1.7 and give it some credit, we then prove the
following weaker version.

Theorem 5.1.10. Let F be a family of k-touching Jordan curves. Then the average
distance in F is at most k/(1 + 1

16e ).

An immediate consequence of Theorems 5.1.8 and 5.1.10 is the following small
improvement over the bound of Fox and Pach [46] in the case of Jordan curves.

Corollary 5.1.11. Any k-touching family of Jordan curves is 15.95k-colourable.

An interesting connection between the chromatic number of k-touching families of
Jordan curves and the packing number of directed cycles in directed planar graphs
was observed by Reed and Shepherd in [92]. In a planar digraph G, let ν(G) be the
maximum number of vertex-disjoint directed cycles. This quantity has a natural linear
relaxation, where we seek the maximum ν∗(G) for which there are weights in [0, 1] on
each directed cycle of G, summing up to ν∗(G), such that for each vertex v of G, the
sum of the weights of the directed cycles containing v is at most 1. It was observed by
Reed and Shepherd [92] that for any G there are integers n and k such that ν∗(G) = n

k
and G contains a collection of n pairwise non-crossing directed cycles (counted with
multiplicities) such that each vertex is in at most k of the directed cycles. If we replace
each directed cycle of the collection by its image in the plane, we obtain a k-touching
family of Jordan curves. Assume that this family is β k-colourable, for some constant
β. Then the family contains an independent set (a set of pairwise non-intersecting
Jordan curves) of size at least n/(β k). This independent set corresponds to a packing
of directed cycles in G. As a consequence, ν(G) ≥ n/(β k) = ν∗(G)/β, and then
ν∗(G) ≤ β ν(G). The following is therefore a direct consequence of Corollaries 5.1.9
and 5.1.11.

Theorem 5.1.12. For any planar directed graph G, ν∗(G) ≤ 15.95 · ν(G). Moreover,
if Conjecture 5.1.7 holds, then ν∗(G) ≤ 10.22 · ν(G)

This improves a result of Reed and Shepherd [92], who proved that for any planar
directed graph G, ν∗(G) ≤ 28 · ν(G). The same result with a constant factor of 16.31
essentially followed from the result of Fox and Pach [46] (and the discussion above).
Using classical results of Goemans and Williamson [50], Theorem 5.1.12 also gives
improved bounds on the ratio between the maximum packing of directed cycles in
planar digraphs and the dual version of the problem, namely the minimum number of
vertices that needs to be removed from a planar digraph in order to obtain an acyclic
digraph.

Organization of the proofs. The proofs of Theorem 5.1.2, 5.1.8 and 5.1.10 are given
in Sections 5.2, 5.3 and 5.4, respectively. Section 5.5 concludes this chapter with some
remarks and open problems.
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5.2 Simple k−touching family of Jordan regions

In this section we prove Theorem 5.1.2. In the proof below we will use the following
parameters instead of their numerical values (for the sake of readability): ε = 1

4 ,
b = 18

ε = 72, and k ≥ 7b− 14 = 490.

The proof proceeds by contradiction. Assume that there exists a counterexample
F , and take it with a minimum number of Jordan regions.

We will construct a bipartite planar graph G from F as follows: for any Jordan
region d of F we add a vertex in the interior of d (such a vertex will be called a disk
vertex ), and for any contact point p (i.e. any point on at least two Jordan regions), we
add a new vertex at p (such a vertex will be called a contact vertex ). Now, for every
Jordan region d and contact point p on d, we add an edge between the disk vertex
corresponding to d and the contact vertex corresponding to p.

We now start with some remarks on the structure of G.

Claim 5.2.1. G is a connected bipartite planar graph.

Proof. The fact that G is planar and bipartite easily follows from the construction. If
G is disconnected, then G(F) itself is disconnected, and some connected component
contradicts the minimality of F .

Claim 5.2.2. All the faces of G have degree (number of edges in a boundary walk
counted with multiplicity) at least 6.

Proof. Note that by construction, the graph G is simple (i.e. there are no parallel
edges). Assume for the sake of contradiction that G has a face f of degree 4. Then
either f bounds three vertices (and F consists of two Jordan curves intersecting in a
single point, in which case the theorem trivially holds), or the face f corresponds to
two Jordan regions of F sharing two distinct points, which contradicts the fact that F
is simple. Since G is bipartite, it follows that each face has degree at least 6.

Two disk vertices having a common neighbor are said to be loose neighbors in G
(this corresponds to intersecting Jordan regions in F).

Claim 5.2.3. Every disk vertex has at least k + 1 loose neighbors in G.

Proof. Assume that some disk vertex has at most k loose neighbors in G. Then the
corresponding Jordan region d of F intersects at most k other Jordan regions in F .
By minimality of F , the family F \{d} is (k+ 1)-colourable, and any (k+ 1)-colouring
easily extends to d, since d intersects at most k other Jordan regions. We obtain a
(k + 1)-colouring of F , which is a contradiction.

Claim 5.2.4. G has minimum degree at least 2, and each contact vertex has degree at
most k.

Proof. The fact that each contact vertex has degree at least two and at most k directly
follows from the definition of a k-touching family. If G contains a disk vertex v of
degree at most one, then since contact vertices have degree at most k, v has at most
k − 1 loose neighbors in G, which contradicts Claim 5.2.3.
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Claim 5.2.5. For any edge uv, at least one of u, v has degree at least 3.

Proof. Assume that a disk vertex u of degree 2 is adjacent to a contact vertex of degree
2. Then u has at most 1+k−1 = k loose neighbors, which contradicts Claim 5.2.3.

A d-vertex (resp. ≤ d-vertex, ≥ d-vertex) is a vertex of degree d (resp. at most d,
at least d). A ≥ b-vertex is also said to be a big vertex. A vertex that is not big is said
to be small.

Claim 5.2.6. Each disk vertex of degree at most 7 has at least one big neighbor.

Proof. Assume that some disk vertex v of degree at most 7 has no big neighbor. It
follows that all the neighbors of v have degree at most b − 1, and so v has at most
7(b− 2) ≤ k loose neighbors, which contradicts Claim 5.2.3.

We now assign to each vertex v of G a charge ω(v) = 2d(v) − 6, and to each face
f of G a charge ω(f) = d(f) − 6 (here the function d refers to the degree of a vertex
or a face). By Euler’s formula, the total charge assigned to the vertices and edges of
G is precisely −12. We now proceed by locally moving the charges (while preserving
the total charge) until all vertices and faces have nonnegative charge. In this case we
obtain that −12 ≥ 0, which is a contradiction. The charges are locally redistributed
according to the following rules (for Rule (R2), we need the following definition: a bad
vertex is a disk 3-vertex v adjacent to two contact 2-vertices u,w, such that the three
faces incident to v have degree 6 and the neighbors of u and w have degree 3).

(R1) For each big contact vertex v and each sequence of three consecutive neighbors
u1, u2, u3 of v in clockwise order around v, we do the following. If u2 has a unique
big neighbor (namely, v), then v gives 2− ε to u2. Otherwise v gives 1 to u2, and
(1− ε)/2 to each of u1 and u3.

(R2) Each big contact vertex gives ε to each bad neighbor.

(R3) Each small contact vertex of degree at least 4 gives 1
2 to each neighbor.

(R4) Each contact 3-vertex adjacent to some ≥ 3-vertex gives ε to each neighbor of
degree 2.

(R5) Each disk vertex of degree at least 4 gives 1 + ε to each neighbor of degree at
most 3.

(R6) For each disk vertex v of degree 3 and each neighbor u of v with d(u) ≤ 3, we do
the following. If either u has degree 3, or u has degree two and the neighbor of u
distinct from v has degree at least 4, then v gives 1− ε to u. Otherwise, v gives
1 to u.

(R7) Each face f of degree at least 8 gives 1
2 to each disk vertex incident with f .

We now analyze the new charge of each vertex and face after all these rules have
been applied.

By Claim 5.2.2, all faces have degree at least 6. Since faces of degree 6 start with
a charge of 0, and do not give any charge, their new charge is still 0. Let f be a face
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of degree d ≥ 8. Then f starts with a charge of d− 6 and gives at most d
2 · 1

2 by Rule

(R7). The new charge is then at least d− 6− d
2 · 1

2 = 3d
4 − 6 ≥ 0, as desired.

We now consider disk vertices. Note that these vertices receive charge by Rules
(R1–4) and (R7), and give charge by Rules (R5–6). Consider first a disk vertex v of
degree d ≥ 8. Then v starts with a charge of 2d − 6 and gives at most d(1 + ε) (by
Rule (R5)), so the new charge of v is at least 2d−6−d(1 + ε) = d(1− ε)−6 ≥ 0 (since
ε = 1

4 ).

Assume now that v is a disk vertex of degree 4 ≤ d ≤ 7. Then by Claim 5.2.6, v has
at least one big neighbor. The vertex v starts with a charge of 2d− 6, receives at least
2− ε by Rule (R1), and gives at most (d− 1)(1 + ε) by Rule (R5). The new charge of
v is then at least 2d− 6 + 2− ε− (d− 1)(1 + ε) = d(1− ε)− 3 ≥ 0 (since ε = 1

4 ).

We now consider a disk vertex v of degree 3. Again, it follows from Claim 5.2.6 that
v has at least one big neighbor. The vertex v starts with a charge of 0, and since v has
at least one big neighbor, v receives at least 2− ε from its big neighbors by Rule (R1).
Let w be a big neighbor of v, and assume first that at least one of the two neighbors
of v distinct from w (call them u1, u2) is not a 2-vertex adjacent to two 3-vertices.
Then by Rule (R6), v gives at most 2− ε to u1, u2 (recall that by Claim 5.2.5, no two
vertices of degree 2 are adjacent in G). In this case the new charge of v is at least
2− ε− (2− ε) ≥ 0, as desired. Assume now that u1, u2 both have degree two and their
neighbors all have degree 3. In this case v gives 1 to each of u1, u2 and the new charge
of v is at least 2− ε− 2 ≥ −ε. If v is incident to a face of degree at least 8, v receives
at least 1

2 from such a face, and its new charge is at least −ε + 1
2 ≥ 0, as desired. So

we can assume that all the faces incident to v are faces of degree 6. In other words,
v is a bad vertex. Then w gives an additional charge of ε to v by Rule (R2), and the
new charge of v in this last case is at least −ε+ ε ≥ 0, as desired.

Assume now that v is a disk vertex of degree two. Then the vertex v starts with
a charge of −2. By Claim 5.2.6, v has a big neighbor, call it w. By Claim 5.2.5, the
neighbor of v distinct from w, call it u, has degree at least 3. If u is big then v receives
a charge of 1+1 = 2 by Rule (R1) and its new charge is thus at least −2+2 = 0, so we
can assume that u is small (in particular, v receives 2−ε from w by Rule (R1)). If u has
degree at least 4, then u gives a charge of 1

2 to v by Rule (R3) and the new charge of v
is then at least −2+2−ε+ 1

2 ≥ 0. If v lies on a face of degree at least 8, then v receives
1
2 from this face by Rule (R7), and its new charge is then at least −2+2−ε+ 1

2 ≥ 0. So
we can assume that u has degree 3 and all the faces containing v have degree 6. If u is
adjacent to some ≥ 3-vertex, then u gives ε to v by Rule (R4), and in this case the new
charge of v is at least −2+2−ε+ε ≥ 0. So we can further assume that all the neighbors
of u are 2-vertices. Call u1, u2 the neighbors of u distinct from v, and for i = 1, 2 let vi
be the neighbor of ui distinct from u. Since u has degree 3, it follows from Claim 5.2.6
that v1 and v2 are big. Let v+ (resp. v−) be the neighbor of w immediately succeeding
(resp. preceding) v in clockwise order around w. The faces containing v have degree 6,
and since G is bipartite with minimum degree at least 2 (by Claims 5.2.1 and 5.2.4),
each of these two faces is bounded by 6 vertices. As a consequence, we can assume
that v+ is adjacent to v1 and v− is adjacent to v2 (see Figure 5.3). It follows that each
of v+, v− has at least two big neighbors. Therefore, by Rule (R1), v received from w
(in addition to the 2− ε that were taken into account earlier) 2 · (1− ε)/2 = 1− ε. So
the new charge of v is at least −2 + 2− ε+ 1− ε = 1− 2ε ≥ 0, as desired.
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u

w

u1

v

u2

v2v1

v+ v−

Figure 5.3: Contact vertices are depicted with white squares and disk vertices are
depicted with black dots.

We now study the new charge of contact vertices. Note that contact vertices give
charge by Rules (R1–4) and receive charge by Rules (R5–7). Consider a contact vertex
v of degree two. Then v starts with a charge of −2. By Claim 5.2.5, the two neighbors
of v (call them u an w) have degree at least 3. If they both have degree at least
4, then they both give 1 + ε to v by Rule (R5), and the new charge of v is at least
−2 + 2(1 + ε) ≥ ε. If one of u,w has degree at least 4 and the other has degree 3, then
v receives 1 + ε by Rule (R5) and 1 − ε by Rule (R6). In this case the new charge of
v is at least −2 + 1 + ε+ 1− ε = 0. Finally, if u and w both have degree 3, then they
both give 1 to v by Rule (R6), and the new charge of v is at least −2 + 1 + 1 = 0, as
desired.

Consider a contact vertex v of degree 3. Then v starts with a charge of 0, and only
gives charge if Rule (R4) applies. In this case, v gives a charge of ε to at most two of
its neighbors. However, if Rule (R4) applies, then by definition, v has a neighbor of
degree at least 3. Then v receives at least 1− ε from such a neighbor by Rules (R5–6).
In this case, the new charge of v is at least 0− 2ε+ 1− ε ≥ 0 (since ε = 1

4 ).
Assume now that v is a contact vertex of degree d ≥ 4. Then v starts with a charge

of 2d− 6. If v is small, then v gives at most d · 1
2 by Rule (R3), and the new charge of

v is then at least 2d− 6− d · 1
2 = 3d

2 − 6 ≥ 0. Assume now that v is big. In this case,
applications of Rule (R1) cost v no more than d(2− ε) charge. We claim the following.

Claim 5.2.7. For every big contact vertex v of degree d, applications of Rule (R2) cost
v no more than 2d

3 · ε charge.

Proof. We will show that v never gives a charge of ε to three consecutive neighbors of
v, which implies the claim. Assume for the sake of contradiction that v gives a charge
of ε to three consecutive neighbors u,w, x of v (in clockwise order around v). Assume
that the neighbors of u are v, u1, u2 (in clockwise order around u), and the neighbors
of w are v, w1, w2 (in clockwise order around w). Recall that by the definition of a
bad vertex, each of u1, u2, w1, w2 has degree two, and all the faces incident to u or w
have degree 6. Let u′1, u

′
2 be the neighbors of u1, u2 distinct from u, and let w′1, w

′
2

be the neighbors of w1, w2 distinct from w. By the definition of a bad vertex, each of
u′1, u

′
2, w

′
1, w

′
2 has degree 3, and since all the faces incident to u or w have degree 6,

u′2 = w′1 and the vertices u′1, u
′
2, w

′
2 have a common neighbor, which we call y. Again,
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Figure 5.4: Illustration of the proof of Claim 5.2.7. The four removed vertices are
circled.

by the definition of a bad vertex, the neighbor of w′2 distinct from y has degree two and
is adjacent to x (see Figure 5.4). Let F ′ be the family obtained from F by removing
the disks corresponding to u,w, u′2, w

′
2. By minimality of F , F ′ has a (k+ 1)-colouring

c, which we seek to extend to u,w, u′2, w
′
2 (by a slight abuse of notation we identify a

disk vertex of G with the corresponding disk of F). Note that u and w′2 have at most
k− 1 coloured neighbors, while w and u′2 have at most k− 2 coloured neighbors. Since
k+ 1 colours are available, it follows that each of u,w′2 has a list of at least 2 available
colours, while each of w, u′2 has a list of at least 3 available colours. We must choose
a colour in each of the four lists such that each pair of vertices among u,w, u′2, w

′
2,

except the pair uw′2, are assigned different colours. This is equivalent to the following
problem: take H to be the complete graph on 4 vertices minus an edge, assign to each
vertex z of H an arbitrary list of at least dH(z) colours, and then choose a colour in
each list such that adjacent vertices are assigned different colours. It follows from a
classical result of Erdős, Rubin and Taylor [37] that this is possible for any 2-connected
graph distinct from a complete graph and an odd cycle (and in particular, this holds
for H). Therefore, the (k + 1)-colouring c of F ′ can be extended to u,w, u′2, w

′
2 to

obtain a (k+ 1)-colouring of F , which is a contradiction. This proves Claim 5.2.7.

Hence, if v is a big contact vertex of degree d, then the new charge of v is at least
2d− 6− d(2− ε)− 2d

3 · ε = d
3 · ε− 6. Since v is big, d ≥ b and so the new charge of v

is at least bε/3− 6 = 0 (since b = 18/ε). It follows that the new charge of all vertices
and faces is nonnegative, and then the total charge (which equals −12) is nonnegative,
which is a contradiction. This concludes the proof of Theorem 5.1.2. �

5.3 Chromatic number in terms of average distance

In this section we prove Theorem 5.1.8. We start with a simple lemma showing that
in order to bound the chromatic number of k-touching families of Jordan curves, it is
enough to bound asymptotically the number of edges in their intersection graphs.
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Lemma 5.3.1. Assume that there is a constant a > 0 and a function f = o(1) such
that for any integers k, n and any k-touching family F of n Jordan curves, the graph
G(F) has at most ak(1 + f(k))n edges. Then for any integer k, any k-touching family
of Jordan curves is 2ak-colourable.

Proof. Let F be a k-touching family of n Jordan curves, and let m denote the number
of edges of G(F). For some integer `, replace each element c ∈ F by ` concentric copies
of c, without creating any new intersection point (i.e., any portion of Jordan curve
between two intersection points is replaced by ` parallel portions of Jordan curves).
Let `F denote the resulting family. Note that `F is `k-touching, contains `n elements,
and G(`F) contains

(
`
2

)
n+`2m edges. Hence, we have

(
`
2

)
n+`2m < a·`k(1+f(`k))·`n.

Therefore, m < (ak(1 + f(`k)) − 1
2 + 1

2` )n, and G(F) contains a vertex of degree at
most 2ak(1 + f(`k)) − 1 + 1

` . This holds for any `, and since the degree of a vertex
is an integer and f = o(1), G(F) indeed contains a vertex of degree at most 2ak − 1.
We proved that k-touching families of Jordan curves are (2ak − 1)-degenerate, and
therefore 2ak-colourable.

We will also need the following two lemmas.

Lemma 5.3.2. For any integers `, k, d such that d+ 2 ≤ ` ≤ k, and for any p ∈ [0, 1),

(1− p)`−2 + p(1− p)`−3(`− d− 2) ≥ (1− p)k−2 + p(1− p)k−3(k − d− 2).

Proof. For fixed d ∈ R and p ∈ [0, 1) we write f(`) := (1−p)`−2 +p(1−p)`−3(`−d−2).
Note that f(d+ 2) = (1−p)d = f(d+ 3). Furthermore, for all reals ` ≥ d+ 3, d

d`f(`) =
(1−p)`−3·(log(1− p) · (1 + p · (`− d− 3)) + p) ≤ (1−p)`−3 (−p · (1 + p · (`− d− 3)) + p) ≤
0. So f(`) ≥ f(k) for all integers d+ 2 ≤ ` ≤ k.

Lemma 5.3.3. For any reals 1 ≤ δ < 2 and k ≥ 2, we have (1− δ
k )k−3 ≥ (1− δ

k )k−2 ≥
e−δ.

Proof. We clearly have (1 − δ
k )k−3 ≥ (1 − δ

k )k−2. To see that the second part of the
inequality holds, observe first that for any real 0 ≤ x ≤ 2, we have e−x ≤ 1 − x

3 and
thus the desired inequality holds for k = 2, 3.

Assume now that k ≥ 4. Note that for any real x ≥ 0, we have e−x ≤ 1− x + x2

2 .
Thus,

exp(− δ
k−2 ) ≤ 1− δ

k−2 + δ2

2(k−2)2 = 1− δ
k + δ

2k(k−2)2 ((δ − 4)k + 8) ≤ 1− δ
k ,

with the rightmost inequality holding since (4−δ)k ≥ 2k ≥ 8. It follows that exp(−δ) ≤
(1− δ

k )k−2, as desired.

We are now ready to prove Theorem 5.1.8.

Proof of Theorem 5.1.8. Let F be a k-touching family of n Jordan curves, with average
distance at most αk, and let δ = δ(α) be as provided by Theorem 5.1.8. Note that since
0 ≤ α ≤ 1, we have 1 ≤ δ ≤ 1

2 (1 +
√

5) < 2. We denote by E the edge-set of G(F), and

by m the cardinality of E. We will prove that m < 3eδ k

δ+δ2(1−α− 2
k )

. Using Lemma 5.3.1,

this implies that the chromatic number of any k-touching family of Jordan curves with
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average distance at most αk is at most 6eδ k
δ+δ2(1−α) . Note that the chosen value δ(α) of

δ minimizes the value of 6eδ

δ+δ2(1−α) . In the remainder of the proof, we will only use the

fact that 1 ≤ δ < 2.
As observed in [41], we can assume without loss of generality that each Jordan curve

is a polygon (this is a simple consequence of the fact that any simple plane graph can
be drawn with straight-line edges).

We recall that for two intersecting Jordan curves a, b ∈ F , D(a, b) is the set of
Jordan curves c distinct from a, b such that the (closed) region bounded by c contains
exactly one of a, b, and the cardinality of D(a, b) (which is called the distance between a
and b) is denoted by d(a, b). For each edge ab ∈ E, we choose an arbitrary point x(a, b)
in the intersection of the Jordan curves corresponding to a and b. Observe that since
the curves are pairwise non-crossing, x(a, b) is contained in all the curves of D(a, b).
We now select each Jordan curve of F uniformly at random, with probability p = δ

k .
Let F ′ be the obtained family. The expectation of the number of Jordan curves in F ′
is pn. For any pair of intersecting Jordan curves a, b, we denote by Pab the probability
that the set S of Jordan curves of F ′ containing x(a, b) satisfies

(1) S has size at most 3,

(2) a, b ∈ S, and

(3) if |S| = 3, then the Jordan curve of S distinct from a and b is not an element of
D(a, b).

Observe that

Pab = p2(1− p)`−2 + p3(1− p)`−3(`− d(a, b)− 2),

where ` ∈ {d(a, b) + 2, . . . , k} denotes the number of Jordan curves containing x(a, b)
in F .

We say that an edge ab ∈ E is good if a, b satisfy (1), (2), and (3) above. It follows
from Lemmas 5.3.2 and 5.3.3 that the expectation of the number of good edges is

∑
ab∈E

Pab ≥
∑
ab∈E

(
p2(1− p)k−2 + p3(1− p)k−3(k − d(a, b)− 2)

)
≥ p2e−δm+ p3e−δ

∑
ab∈E

(k − d(a, b)− 2)

= p2e−δm

(
1 + p(k − 2− 1

m

∑
ab∈E

d(a, b))

)
.

≥ p2e−δm
(
1 + δ(1− α− 2

k )
)
,

since
∑
ab∈E d(a, b) ≤ αkm.

Let F ′′ be obtained from F ′ by slightly modifying the Jordan curves around each
intersection point x as follows. If x = x(a, b), for some good edge ab, then we do the
following. Note that by (1) and (2), a, b ∈ F ′ and x = x(a, b) is contained in at most
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Figure 5.5: The point x(a, b) is depicted by a white dot, and the newly created points
are depicted by black dots.

one Jordan curve of F ′ distinct from a and b. Assume that such a Jordan curve exists,
and call it c. By (3), a and b are at distance 0 in F ′. We then slightly modify c in a
small disk centered in x(a, b) so that for any d ∈ {a, b}, if c and d are at distance 0 in
F ′, then they remain at distance 0 in F ′′. Moreover, the point x(a, b) and the newly
created points are 2-touching in F ′′ (see Figure 5.5). If ac (resp. bc) is also a good edge
with x(a, c) = x (resp. x(b, c) = x), then note that the conclusion above also holds
with a, b replaced by a, c (resp. b, c). Now, for any other intersection point y of Jordan
curves of F ′, that is not equal to x(a, b) for some good edge ab, we make the Jordan
curves disjoint at y. It follows from the definition of a good edge that the family F ′′
obtained from F ′ after these modifications is 2-touching, and for any good edge ab,
a and b are at distance 0 in F ′′. Note that G(F ′′) is planar, since F ′′ is 2-touching,
and its expected number of edges is

∑
ab∈E Pab. Since the number of edges of a planar

graph is less than three times its number of vertices, we obtain:

3pn >
∑
ab∈E

Pab ≥ p2e−δm
(
1 + δ(1− α− 2

k )
)
.

As a consequence,

m <
3eδ k

δ + δ2
(
1− α− 2

k

) n,
as desired. This concludes the proof of Theorem 5.1.8. �

5.4 Average distance for k−touching Jordan curves

In this section we prove Theorem 5.1.10. The following is an easy variation of the main
result of Fox and Pach [46]. Consider three Jordan curves a, b, c such that a is outside
the region bounded by c, b is inside the region bounded by c, and a intersects b. Then
we say that the pair a, b is c-crossing.
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Lemma 5.4.1. Let c be a Jordan curve, and let F be a family of n Jordan curves such
that F ∪ {c} is k-touching and all the elements of F intersect c. Then the number of
c-crossing pairs in F is at most 2ekn.

Proof. Let m be the number of c-crossing pairs in F . For each c-crossing pair a, b in
F , we consider an arbitrary point x(a, b) in a ∩ b. We now select each Jordan curve
of F uniformly at random with probability p = 1

k . Let F ′ be the resulting family. A
c-crossing pair a, b in F is good if F ′ contains a and b, but does not contain any other
Jordan curve of F containing x(a, b). Note that the probability that a given c-crossing
pair a, b is good is at least p2(1−p)k−3, and therefore the expectation of the number of
good c-crossing pairs is at least p2(1− p)k−3m. For any intersection point y of Jordan
curves of F ′, that is not equal to x(a, b) for some good c-crossing pair a, b, we make
the Jordan curves disjoint at y (this is possible since the Jordan curves are pairwise
non-crossing). Let F ′′ be the obtained family. Observe that F ′′ is 2-touching and
each intersection point contains one Jordan curve lying outside the region bounded by
c and one Jordan curve lying inside the region bounded by c. The graph G(F ′′) is
therefore planar and bipartite. The expectation of the number of vertices of G(F ′′)
is pn and the expectation of the number of edges of G(F ′′) is at least p2(1− p)k−3m.
Since any planar bipartite graph on N vertices contains at most 2N edges, it follows
that p2(1 − p)k−3m < 2pn. Since (1 − 1

k )k−3 > e−1, we obtain that m < 2ekn, as
desired.

Some planar quadrangulations can be represented as 2-touching families of Jordan
curves intersecting a given Jordan curve c (so that each edge of the quadrangulation
corresponds to a c-crossing pair of Jordan curves). Therefore, the bound 2N cannot be
decreased (by more than an additive constant) in the proof of Lemma 5.4.1. Further-
more, the possibly near-extremal example in Figure 5.6 shows that the bound 2ekn in
Lemma 5.4.1 cannot be improved to less than (2k − 4)n.

Figure 5.6: A family F of n Jordan curves that all intersect a fixed Jordan curve c, such
that F ∪{c} is k−touching. Each Jordan curve in the interior of c touches each Jordan
curve in the exterior of c. In the interior, there are only two sets of k − 2 concentric
Jordan curves. The remaining n− 2k + 4 Jordan curves are in the exterior of c. As n
goes to infinity, the number of c−crossing pairs divided by n converges to 2k − 4.

We are now ready to prove Theorem 5.1.10.
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Proof of Theorem 5.1.10. Let E denote the edge-set of G(F) and let m = |E|. Let
α = 1

km

∑
ab∈E d(a, b). Note that the average distance in F is αk.

Fix some 0 < ε < 1, and set δ = 1
2 (1 − ε). For any edge ab ∈ E with d(a, b) > 0,

we do the following. Note that there is a unique ordering c1, . . . , cd of the elements of
D(a, b), such that for any 1 ≤ i ≤ d, the distance between a and ci is i− 1. Then the
edge ab gives a charge of 1 to each of the elements cdδde, cdδde+1, . . . , cb(1−δ)dc+1. Let
T be the total charge given during this process. Note that

T =
∑
ab∈E

(b(1− δ)d(a, b)c+ 1− dδd(a, b)e+ 1)

≥
∑
ab∈E

(1− 2δ)d(a, b) = ε
∑
ab∈E

d(a, b).

We now analyze how much charge was received by an arbitrary Jordan curve c.
Let N(c) denote the neighborhood of c, and let N+(c) (resp. N−(c)) denote the
set of neighbors of c lying outside (resp. inside) the region bounded by c. Observe
that if c received a charge of 1 from some edge ab, then without loss of generality we
have a ∈ N+(c), b ∈ N−(c), and both a and b are at distance at most max(b(1 −
δ)d(a, b)c, d(a, b) − dδd(a, b)e) ≤ (1 − δ)d(a, b) ≤ (1 − δ)k from c. Let N1−δ(c) denote
the set of neighbors of c that are at distance at most (1− δ)k from c. Then the charge
received by c is at most the number of c-crossing pairs a, b in the subfamily of F induced
by N1−δ(c), which is at most 2ek|N1−δ(c)| by Lemma 5.4.1.

For any γ, let mγ denote the number of edges ab ∈ E such that a and b are at
distance at most γk. It follows from the analysis above that T ≤ 4ekm1−δ. Therefore,∑
ab∈E d(a, b) ≤ 4e

ε km1−δ. Since
∑
ab∈E d(a, b) = αkm, we have m(1+ε)/2 = m1−δ ≥

εα
4e m.

We now study the contribution of an arbitrary edge ab to the sum
∑
ab∈E d(a, b) =

αkm. Let t be some integer. If d(a, b) ≤ t+1
2t k, then ab contributes at most t+1

2t k to
αkm, and therefore at most t+1

2t to αm. Note that there are m(t+1)/2t such edges ab.

For each 2 ≤ i ≤ t− 1, each edge ab such that t+i−1
2t k < d(a, b) ≤ t+i

2t k contributes at

most t+i
2t to αm, and there are m(t+i)/2t −m(t+i−1)/2t such edges. Finally, each edge

ab with d(a, b) > 2t−1
2t k contributes at most 1 to αm, and there are m−m(2t−1)/2t such

edges. As a consequence,

αm ≤ t+1
2t m(t+1)/2t +

t−1∑
i=2

(
t+i
2t (m(t+i)/2t −m(t+i−1)/2t)

)
+m−m(2t−1)/2t

=

t−1∑
i=1

(
m(t+i)/2t(

t+i
2t − t+i+1

2t )
)

+m

= m− 1
2t

t−1∑
i=1

m(t+i)/2t

≤ m− 1
2t

t−1∑
i=1

i
t
α
4e m,
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since m(1+ε)/2 ≥ εα
4e m for every 0 < ε < 1. As a consequence, we obtain that

α ≤ 1− t−1
t

α
16e . Since this holds for any integer t, we have α ≤ 1− α

16e and therefore
α ≤ 1/(1 + 1

16e ), as desired. �

5.5 Remarks and open questions

Most of the proof of Theorem 5.1.2 proceeds by finding a Jordan region intersecting at
most k other Jordan regions (see Claim 5.2.3). On a single occasion, we use a different
reduction (via a list-colouring argument). A natural question is: could this be avoided?
Is it true that in any simple k-touching family of Jordan regions, if k is large enough,
then there is a Jordan region which intersects at most k other Jordan regions? It turns
out to be wrong, as depicted in Figure 5.7. However, a proof along the lines of that of
Theorem 5.1.2 (but significantly simpler), shows that if k is large enough, then there is
a Jordan region which intersects at most k+1 other Jordan regions. It was pointed out
to us by Patrice Ossona de Mendez (after the original version of this manuscript was
submitted) that he also obtained this result in 1999 (see [89]). His result and its proof
are stated with a completely different terminology, but the ideas are essentially the
same. In particular, his result also implies (relatives of) our Corollaries 5.1.3 and 5.1.4.

k

Figure 5.7: Every Jordan region intersects precisely k + 1 other Jordan regions.

This can be used to obtain a result on the chromatic number of simple families
of k-touching Jordan curves (families of k-touching Jordan curves such that any two
Jordan curves intersect in at most one point). Using the result mentioned above (that
if k is sufficiently large and the interiors are pairwise disjoint, then there is a Jordan
region that intersects at most k + 1 other Jordan regions), it is not difficult to show
that the chromatic number of any simple family of k-touching Jordan curves is at most
2k plus a constant. We believe that the answer should be much smaller.

Problem 5.5.1. Is it true that for some constant c, any simple family of k-touching
Jordan curves can be coloured with at most k + c colours?

It was conjectured in [41] that if S is a family of pairwise non-crossing strings such
that (i) any two strings intersect in at most one point and (ii) any point of the plane
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is on at most k strings, then S is (k+ c)-colourable, for some constant c. Note that, if
true, this conjecture would give a positive answer to Problem 5.5.1.





Chapter 6

The dimension of the
Incipient Infinite Cluster.

In this chapter, we study the Incipient Infinite Cluster (IIC) of high-dimensional bond
percolation on Zd. We prove that the mass dimension of IIC almost surely equals 4
and the volume growth exponent of IIC almost surely equals 2.

6.1 Introduction

Consider critical nearest-neighbour percolation on Zd. The Incipient Infinite Cluster
(IIC) is a random infinite subset of Zd which intuitively can be viewed as the critical
cluster of the origin, conditioned to be infinitely large. This conditioning induces a new
probability measure PIIC. We study the IIC in high dimensions d (see below for formal
definitions) and in particular we identify the typical size of IIC under PIIC. In order to
sensibly determine the size of the IIC we use the concepts of mass dimension dm(A)
of a subset A ⊂ Zd and the volume growth exponent df (G) of an infinite connected
graph G. The former measures the IIC with respect to the (extrinsic) distance of the
space Zd in which IIC is embedded, while the latter measures the induced graph of IIC
with respect to (intrinsic) graph distance. We prove that the mass dimension of IIC
is 4 and the volume growth exponent of the graph of IIC is 2, PIIC-almost surely. See
Theorems 1 and 2 below. Theorem 1 gives an explicit and rigorous foundation for the
intuition that for high d the IIC is a 4-dimensional object, a conjecture of physicists
going back at least 30 years [2][4].

6.1.1 Critical high-dimensional bond percolation

Let G = (Zd, E) be a graph and fix a parameter p ∈ [0, 1]. We focus on the case of
nearest-neighbour bond percolation, meaning that (x, y) ∈ E ⇔ ‖x− y‖1 = 1 and each
edge (also called bond) e ∈ E is independently declared open with probability p and
closed with probability 1− p. Here ‖x‖1 denotes the `1-norm of x ∈ Zd. The resulting
probability measure is denoted by Pp.

101
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Let {x↔ y} denote the event that vertices x and y are connected by a finite path
of open edges. Let C (x) =

{
y ∈ Zd | x↔ y

}
denote the open cluster of x. It is well

known that for d ≥ 2 there exists a critical probability pc ∈ (0, 1) for which the model
undergoes a phase transition:

Ppc(∃x ∈ Zd s.t. |C (x)| =∞) =

{
0 if p < pc;

1 if p > pc.
(6.1)

Later we will zoom in on what happens at p = pc. Let ‖x‖ denote the Euclidean
norm of x ∈ Zd. This choice of norm is not essential, since all norms on Zd are
equivalent and we only work with estimates that hold up to a constant value. For
functions f and g, we let f � g denote that cg ≤ f ≤ Cg holds asymptotically for
some constants c, C > 0. Throughout this chapter we assume that our lattice is high-
dimensional, by which we mean that d > 6 is such that

Ppc(x↔ y) � ‖x− y‖2−d, (6.2)

for x, y ∈ Zd. It is widely believed that (6.2) holds in all dimensions d > 6. In case of
nearest-neighbour percolation it has been known for some time that (6.2) is true for
all d ≥ 19 [55] and recently V.d. Hofstad and Fitzner [45] proved it for d ≥ 11. If
there exists an L > 0 such that (x, y) ∈ E ⇔ ‖x− y‖ ≤ L, then we speak of spread-out
finite-range percolation, rather than nearest-neighbour percolation. For this model,
it has been proven that (6.2) holds in d > 6 if the lattice is sufficiently spread out,
which means that L should be large enough [58]. For readability we restrict ourselves
to the case of nearest-neighbour percolation, but all results in this chapter also hold
for spread-out finite-range percolation.

In the regime of high dimensions, calculations are relatively easy. In technical
practice this is often a consequence of validity of the bound (6.2) on the two-point
function, but the intuitive idea behind all this is that for d larger than a certain critical
dimension dc, of which the value is believed to be 6, the model attains mean-field
behaviour. The amount of space in which open paths can travel has become so large
that different pieces of a critical cluster hardly interact. In particular, large open cycles
have very small probability. Therefore an open cluster will for many questions behave
like a connected graph without cycles: a tree. Percolation on a tree is relatively easy.

Incipient Infinite Cluster We now focus on what happens during the phase tran-
sition at p = pc. In particular, we want to know how critical clusters behave ‘as they
are becoming infinitely large’. This interpretation is the source of the name Incipient
Infinite Cluster (IIC), a term originating from the physics literature, which was first
defined and treated in a mathematically rigorous way by Kesten [69]. See below for a
formal definition.

It turns out that Ppc (|C (0)| =∞) = 0 in high dimensions [56], so working directly
with Ppc will not provide us with interesting detailed information about an infinite
cluster. This problem can be overcome by conditioning on some event that implies
that |C (0)| = ∞, thus constructing a new probability measure. There exist several
constructions of such an IIC-measure that have been proven to be equivalent, providing
evidence that the IIC is quite a canonical, robust and unique object. For a precise
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characterization, the reader is referred to [59] and [100]. We will only directly need the
following construction:

PIIC(F ) = lim
‖x‖→∞

Ppc(F | 0↔ x) (6.3)

for cylinder events F . In high dimensions, the limit exists irrespective of the direction.
Through references to literature we will also implicitly use the construction

QIIC(F ) = lim
p↑pc

∑
x∈Zd Pp (F ∩ {0↔ x})∑

x∈Zd Pp (0↔ x)
.

In high dimensions, the limits PIIC(F ) and QIIC(F ) exist and are equal for all cylinder
events F . Consequently PIIC and QIIC extend to the same probability measure in our
context [59],[100]. Expectation value with respect to PIIC is denoted by EIIC. It holds
that PIIC (|C (0)| =∞) = 1 and partly because of this, some authors refer to the IIC
as the distribution of C (0) under PIIC. However, in the context of PIIC the term IIC is
also often used to refer to the infinite cluster at the origin itself. We adopt the latter
convention.

Definition. IIC is the random graph with vertex set C (0) and induced edge set

{(x, y) ∈ C (0)× C (0) | (x, y) is open } .

In many cases we are only interested in the vertices and therefore we abuse notation
by writing IIC = C (0).

6.1.2 Mass dimension and volume growth exponent

In order to determine how large the (infinite) IIC is, we need to associate some natural
notion of dimensionality. On the one hand, we will calculate the mass dimension, which
counts the vertices of IIC that are in a cube of finite radius r around the origin. On
the other hand, we consider the volume growth exponent, which counts the number
of vertices in IIC that can be reached from the origin by an open path of length at
most some fixed r. In the former case, IIC is counted with respect to the ‘extrinsic’
(Euclidean) metric of the underlying lattice Zd, while in the latter case, IIC is counted
with respect to the ‘intrinsic’ graph distance of the random graph.

Auxiliary definitions. Denote by

Qr =
{
x ∈ Zd | ‖x‖ ≤ r

}
the cube with radius r and boundary

∂Qr = Qr\Qr−1.

In practice we will want to bound the cardinality of the following three random sets,

Xr = {x ∈ Qr | 0↔ x}

Xr,r =
{
x ∈ Qr | 0 Qr←→ x

}
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Br =
{
x ∈ Zd | 0 ≤r←→ x

}
where 0

Qr←→ x means that 0 is connected to x by an open path that does not leave Qr

and 0
≤r←→ x means that 0 is connected to x by an open path of length ≤ r (with respect

to graph distance in the random percolated graph).

Definition of dimensions. The mass dimension of a subset A ⊂ Zd is

dm(A) = lim
r→∞

logr |A ∩Qr|

if the limit exists. The volume growth exponent of an infinite connected graph G is
defined by

df (G) = lim
r→∞

logr |BG(x, r)|
if the limit exists. Here BG(x, r) is the ball with some center vertex x and radius r,
with respect to graph distance.

Note that the mass dimension of IIC equals dm(IIC) = limr→∞ logr |Xr| and the vol-
ume growth exponent of IIC can be rewritten as df (IIC) = limr→∞ logr |BIIC(0, r)| =
limr→∞ logr |Br|.

Our main goal is to prove Theorem 6.1.1, which states that on a high-dimensional
lattice the mass dimension of IIC almost surely equals 4.

Theorem 6.1.1. In high dimensions,

PIIC

(
dm(IIC) ≡ lim

r→∞
(logr |Xr|) = 4

)
= 1.

This can be contrasted against Theorem 6.1.2, which states that on a high-dimensional
lattice the volume growth exponent of IIC almost surely equals 2. This second result
was already implicit in two auxiliary lemmas in [78], which we use to obtain a formal
derivation of the almost sure statement.

Theorem 6.1.2. In high dimensions,

PIIC

(
df (IIC) ≡ lim

r→∞
(logr |Br|) = 2

)
= 1.

6.1.3 Embedding and conjectures

On the 4-dimensionality of IIC. Earlier developments in the direction of deter-
mining ‘the’ dimension of the IIC include the following. In [100] it was shown that in
high dimensions, PIIC (0↔ x) � ‖x‖4−d, implying that EIIC(|Xr|) � C · r4. This mo-
ment bound, which is also derived in a more general setting in [59], already gave some
weak notion of the 4-dimensionality of the IIC. As we will see later, it provides enough
information to derive an almost sure upper bound 4 on the (upper) mass dimension
of IIC, essentially using Markov’s inequaliy and Borel-Cantelli. However, deriving the
corresponding lower bound 4 on the (lower) mass dimension requires a completely dif-
ferent technique. Concentration inequalities like the second moment method are not
powerfull enough [17] and many standard techniques from percolation theory don’t
apply because of the delicate dependency on the origin, induced by the IIC-measure.
Indeed, the derivation of the lower bound constitutes the main contribution of this
chapter.
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Spectral dimension and other bounds on |Xr| and |Br|. The spectral dimension
of an infinite connected graph G is defined by

ds(G) = −2 · lim
r→∞

logr (p2r(x, x))

if the limit exists. Here p2r(x, x) is the return probability of a simple random walk on G
after r steps. Kozma and Nachmias [78] showed that ds(IIC) = 4

3 , thereby confirming
the so-called Alexander-Orbach conjecture in high dimensions. For many ‘nice’ graphs
and in particular for any Cayley graph G it holds that df (G) = ds(G), but this is
not the case for the IIC, as df (IIC) = 2 6= 4

3 = ds(IIC), suggesting that the IIC is
an intrinsically fractal object. Kozma and Nachmias also showed that Epc (|Br|) � r
and Ppc (Br\Br−1 6= Ø) � r−1. These statements are in terms of the intrinsic graph
distance and should be contrasted against their extrinsic counterparts Epc (|Xr|) � r2

and Ppc (0↔ ∂Qr) � r−2 [59][79].

Growth behaviour of the boundary of Xr,r. In the proof of Theorem 6.1.1,
we actually also show that PIIC (limr→∞ logr(|Xr,r|) = 4) = 1. That is, |Xr,r| and
|Xr| don’t differ very much; they both grow like r4. Define the boundary ∂Xr :=
{x ∈ ∂Qr | 0↔ x}. Since Xr =

⊔r
k=1 ∂Xk, it is to be expected that |∂Xr| typically

grows like r3. Similarly, if we define the ‘boundary’ ∂Xk,r :=
{
x ∈ ∂Qk | 0 Qr←→ x

}
then

Xr,r =
⊔r
k=1 ∂Xk,r, so one would expect that |∂Xk,r| grows like k3. We believe this is

indeed the case for k � r, because for those values |∂Xk,r| ≈ |∂Xk|. However, if k ≈ r
the picture (presumably) changes completely. Theorem 1.16 in [17] yields that there
exists a constant C > 0 such that for all λ, r > 0, PIIC

(∑r
k=1 |∂Xk,k| ≤ 1

λ · r3
)
≤ C · 1

λ .

A slight adaptation of that proof yields that PIIC

(
|∂Xr,r| ≤ 1

λ · r2
)
≤ C · 1

λ and in fact,

we conjecture that the opposite bound PIIC

(
|∂Xr,r| ≥ λ · r2

)
≤ C · 1λ holds too. In other

words, we expect |∂Xr,r| to grow like r2 instead of r3. One motivation for the opposite
bound comes from Theorem 2 in [79], which essentially says that |Xr,r| is smaller than
r2 if |Xr| is smaller than r4. To actually prove the opposite bound, it would suffice
to show that EIIC (|∂Xr,r|) ≤ C · r2, and for this it would be very useful to have a

good upper bound on PIIC(0
Qr←→ x), for x ∈ ∂Qr. While PIIC(0 ←→ x) � ‖x‖4−d

depends only on the norm of ‖x‖ but not really on the choice of norm, the behaviour

of PIIC(0
Qr←→ x) is more complicated. For example, if we define the cube Qr with

respect to the `∞-norm, then it is much ‘harder’ for an open path that stays entirely
inside Qr to reach a corner vertex x1 of Qr, than it is to reach the center vertex x2 of
a face of Qr, although ‖x1‖∞ = ‖x2‖∞.

The backbone of IIC and scaling limits. There is a natural subset of the IIC,
called the backbone (bb) of the IIC, which consists of all open bonds e = (e−, e+) such
that there exist two disjoint open paths, one path from 0 to e− and the other path
from e+ to ∞. It is expected that the mass dimension of the backbone PIIC-almost
surely equals 2. The validity of the almost sure upper bound 2 is immediate from
the known expectation bound EIIC (|bb ∩Qr|) � r2 [59] and an application of Lemma
6.3.2. Heydenreich, V.d. Hofstad, Hulshof and Miermont prepare a proof that the
scaling limit of the backbone is a brownian motion, which almost surely has Hausdorff
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dimension 2. A related, but wide open conjecture is that the scaling limit of the
high-dimensional IIC itself is Integrated super-Brownian excursion [57].

The IIC in low dimensions. For d = 1, IIC trivially has mass dimension and
volume growth exponent 1. Kesten proved the bound

EIIC|IIC ∩Qr| � r2 · Ppc (0↔ ∂Qr) ,

which holds for a wide range of lattices on Z2 [69]. For site percolation on the trian-
gular lattice, Lawler, Schramm and Werner were able to show that Ppc (0↔ ∂Qr) =
r−5/48+o(1) [80]. So for this particular lattice, EIIC|IIC ∩ Qr| � r2 · r−5/48 = r91/48.
By the conjectured universality of the exponent, this result presumably holds for all
common two-dimensional lattices. Note that 91

48 is just slightly smaller than 2, the
dimension of the surrounding space. For 3 ≤ d ≤ 6 very little is known rigorously.
Simulations by Kumagai suggest that ds(IIC) ranges from ≈ 1.318+/−0.001 for d = 2
to ≈ 1.34 + / − 0.02 for d = 5, which is close to the value 4/3 that holds in high
dimensions, but nevertheless supports the belief that the Alexander-Orbach conjecture
is false for d ≤ 6 [78].

6.1.4 About the proof

For Theorem 1 we use an upper bound on the expectation value of |Xr| to derive
that dm(IIC) ≤ 4, almost surely. The lower bound is the hard (or at least more
unusual) part. For this we use the one-arm exponent bound Ppc (0↔ ∂Qr) ≤ C ·
1
r2 , from which it will follow that under PIIC a typical shortest open path between
0 and ∂Qr has length r2. In Theorem 6.3.1 this is combined with the fact that the
intrinsic ball Br contains approximately r2 elements, yielding that |Xr| ≥ |Xr,r| ≈
|B(length shortest open path 0↔∂Qr )| ≈ |Br2 | ≈ (r2)2 = r4, or rather that large downwards
deviations of these approximations have small enough probability. The workhorse
of this chapter is Lemma 6.3.2, which turns probabilistic bounds into almost sure
statements. Indeed, Theorem 6.1.2 follows by a direct application of this lemma to a
result from literature.

6.2 Ingredients from literature

In this section we collect ingredients from the literature that we use in our proofs.

Theorem 6.2.1 (Theorem 1.5 in [59]). In high dimensions, there exists a constant
C > 0 such that for all r ≥ 1:

EIIC (|Xr|) ≤ C · r4.

Theorem 6.2.2 (Corollary of Theorem 1 in [79]). In high dimensions, there exists a
C > 0 such that for all r ≥ 1:

Ppc (0↔ ∂Qr) ≤ C ·
1

r2
.
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Lemma 6.2.3 (Lemma 2.5 in [78]). In high dimensions, there exists a constant C > 0
such that for all r ≥ 1 and any event E measurable with respect to Br and for any
x ∈ Zd with ‖x‖ sufficiently large:

Ppc(E ∩ {0↔ x}) ≤ C ·
√
r · Ppc(E) · Ppc(0↔ x).

Lemma 6.2.4 (Essentially Lemma 6.1 in [101]). In high dimensions, there exists a
C > 0 such that for all ε > 0, r ≥ 1:

PIIC

(
0
≤ε·r2←→ ∂Qr

)
≤ C · √ε,

where

{
0
≤ε·r2←→ ∂Qr

}
is the event that 0 is connected to ∂Qr by an open path of length

≤ ε · r2.

Proof. The event E =

{
0
≤ε·r2←→ ∂Qr

}
is measurable with respect to Bε·r2 . Therefore,

Lemma 6.2.3 implies that for any x ∈ Zd with ‖x‖ sufficiently large,

Ppc
(

0
≤ε·r2←→ ∂Qr | 0↔ x

)
≤ C ′ ·

√
ε · r2 · Ppc (0↔ ∂Qr) ≤ C ·

√
ε,

where the second inequality follows from Theorem 6.2.2. Now apply construction (6.3)
of PIIC.

Lemma 6.2.5 (Essentially Lemmas 2.2 and 2.3 in [78]). In high dimensions, there
exists a C > 0 such that for all λ > 1 and r ≥ 1:

PIIC

(
|Br| ≤

1

λ
· r2

)
≤ C · 1

λ
(6.4)

and

PIIC

(
|Br| ≥ λ · r2

)
≤ C · 1

λ
. (6.5)

Proof. Inequality (6.4) is the statement of Lemma 2.3 in [78]. On the other hand,
Lemma 2.2 in [78] states that there exists a C > 0 such that for all r ≥ 1 and all
x ∈ Zd with ‖x‖ sufficiently large,

Epc
(
|Br| · 1{0↔x}

)
≤ C · r2 · Ppc (0↔ x) .

By Markov’s inequality this implies that for all λ > 1 and r ≥ 1 it holds that
Ppc

(
|Br| ≥ λ · r2 | 0↔ x

)
≤ C · 1

λ , for all x ∈ Zd with ‖x‖ sufficiently large. Let-

ting ‖x‖ → ∞ yields (6.5), because
{
|Br| ≥ λ · r2

}
is a cylinder event.
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6.3 Deriving the main theorems

The following theorem is crucial for the derivation of Theorem 6.1.1. It relies on
Lemmas 6.2.4 and 6.2.5 and in that sense, it uses that both the cardinality of the
intrinsic ball with radius r and the length of the shortest path from 0 to the boundary
of ∂Qr grow like r2.

Theorem 6.3.1. In high dimensions, there exists a C > 0 such that for all λ > 1 and
r ≥ 1:

PIIC

(
|Xr,r| ≤

1

λ
· r4

)
≤ C · 1

λ1/5
.

Proof. Let λ > 1. Write ε := ε(λ) = λ−2/5, then

PIIC

(
|Xr,r| ≤

1

λ
· r4

)
= PIIC

(
|Xr,r| ≤

1

λ
· r4, 0

≤ε·r2←→ ∂Qr

)
+

PIIC

(
|Xr,r| ≤

1

λ
· r4, not 0

≤ε·r2←→ ∂Qr

)
. (6.6)

By Lemma 6.2.4 we can bound the first term as follows:

PIIC

(
|Xr,r| ≤

1

λ
· r4, 0

≤ε·r2←→ ∂Qr

)
≤ PIIC

(
0
≤ε·r2←→ ∂Qr

)
≤ C · ε1/2 = C · 1

λ1/5
. (6.7)

On the other hand, if

{
not 0

≤ε·r2←→ ∂Qr

}
occurs then the intrinsic ball Bε·r2 is a subset

of Xr,r, so |Bε·r2 | ≤ |Xr,r|. Therefore a bound on the second term is given by

PIIC

(
|Xr,r| ≤

1

λ
· r4, not 0

≤ε·r2←→ ∂Qr

)
≤ PIIC

(
|Bε·r2 | ≤

1

λ
· r4

)
= PIIC

(
|Bε·r2 | ≤

1

λ · ε2 · (ε · r
2)2

)
≤ C · 1

λ · ε2

= C · 1

λ1/5
, (6.8)

where the second inequality follows from Lemma 6.2.5. Now evaluate (6.7) and (6.8)
in (6.6) to finish the proof.

The next lemma will be used to transform the results obtained so far into the almost
sure statements of Theorem 6.1.1 and 6.1.2. We present a more general and stronger
version than we actually need.

Lemma 6.3.2. Let Z1, Z2, . . . be a sequence of random variables with values in R>0,
such that Z1 ≤ Z2 ≤ . . .

1. If there exist constants β, µ, C > 0 such that at least one of the following two
conditions holds
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• E(Zr) ≤ C · rβ for all r > 0;

• P(Zr ≥ λ · rβ) ≤ C · 1
log(λ)1+µ for all λ > 1 and r > 0,

then:

P
(

lim sup
r→∞

(logr(Zr)) ≤ β
)

= 1. (6.9)

2. If there exist constants α, µ,C > 0 such that at least one of the following two
conditions holds

• E
(

1
Zr

)
≤ C · r−α for all r > 0;

• P(Zr ≤ 1
λ · rα) ≤ C · 1

log(λ)1+µ for all λ > 1 and r > 0,

then:
P
(

lim inf
r→∞

(logr(Zr)) ≥ α
)

= 1. (6.10)

Proof. First note that the first condition of (6.9) implies the second condition of (6.9).
Indeed, by Markov’s inequality there exist C, µ > 0 such that for all λ > 1 and r > 0

P(Zr ≥ λ · rβ) ≤ E(Zr)

λ · rβ ≤
C · rβ
λ · rβ ≤ C ·

1

log(λ)1+µ
.

Similarly, the first condition of (6.10) implies the second condition of (6.10). Indeed,

P
(
Zr ≤

1

λ
· rα
)

= P
(

1

Zr
≥ λ · r−α

)
≤

E
(

1
Zr

)
λ · r−α ≤

C · r−α
λ · r−α ≤ C ·

1

log(λ)1+µ
.

It remains to prove (6.9) and (6.10) under their second condition.

Define the strictly increasing subsequences rk = 2k and λk = 2

(
k(

1+µ/2
1+µ )

)
. Also

define εk := logrk(λk) = k( 1+µ/2
1+µ −1). Note that rk, εk > 0 and λk > 1 for all positive

integers k, and limk→∞ εk = 0. We first prove (6.9). For all positive integers k it holds
that

P
(
Zrk ≥ λk · rβk

)
≤ C · 1

log(λk)1+µ
. (6.11)

Using the notation Yr := logr(Zr) we obtain that

∞∑
k=1

P (Yrk ≥ εk + β) =

∞∑
k=1

P
(
Zrk ≥ λk · rβk

)
≤ C ·

∞∑
k=1

1

log(λk)1+µ

=
C

log(2)1+µ
·
∞∑
k=1

1

k1+µ/2

< ∞.
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By Borel-Cantelli this implies that

P (Yrk ≥ εk + β for infinitely many k) = 0

and because limk→∞ εk = 0 it follows that

P
(

lim sup
k→∞

(Yrk) ≤ β
)

= 1. (6.12)

Now consider any r > 0 and choose k ∈ N such that 2k ≤ r ≤ 2k+1. Then

Yr =
log(Zr)

log(r)
≤ log(Z2k+1)

log(2k)
=

log(Z2k+1)

log(2k+1)
· log(2k+1)

log(2k)
= Y2k+1 · k + 1

k

and

Yr =
log(Zr)

log(r)
≥ log(Z2k)

log(2k+1)
=

log(Z2k)

log(2k)
· log(2k)

log(2k+1)
= Y2k ·

k

k + 1
,

so
lim sup
r→∞

Yr = lim sup
k→∞

Y2k (6.13)

and
lim inf
r→∞

Yr = lim inf
k→∞

Y2k . (6.14)

Evaluating (6.13) in (6.12) yields the desired statement (6.9).

The proof of (6.10) is almost the same. By the arguments used in (6.11) - (6.12)
we obtain

P (Yrk ≤ −εk + α for infinitely many k) = 0

and therefore

P
(

lim inf
k→∞

(Yrk) ≥ α
)

= 1. (6.15)

Evaluating (6.14) in (6.15) yields the desired statement (6.10).

We are ready to prove the main theorems.

Proof of Theorem 6.1.1.
Apply Lemma 6.3.2.(i) to Theorem 6.2.1, with Zr = |Xr| and β = 4, to obtain

PIIC

(
lim sup
r→∞

(logr |Xr|) ≤ 4

)
= 1. (6.16)

Apply Lemma 6.3.2.(ii) to Theorem 6.3.1, with Zr = |Xr,r| and α = 4, to obtain

PIIC

(
lim inf
r→∞

(logr |Xr,r|) ≥ 4
)

= 1. (6.17)

Because |Xr,r| ≤ |Xr| for all r ≥ 0 the theorem now follows from (6.16) and (6.17).
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Proof of Theorem 6.1.2.
Apply Lemma 6.3.2.(i) and 6.3.2.(ii) to Lemma 6.2.5, with Zr = |Br| and α = β = 2,
to obtain

PIIC

(
lim sup
r→∞

(logr |Br|) ≤ 2

)
= PIIC

(
lim inf
r→∞

(logr |Br|) ≥ 2
)

= 1.





Appendix: Immersing Reed

The strong immersion number i(G) of a graph G is the size of the largest clique C that
is a strong immersion of G, meaning that there is an injective function f from (the
vertices of) C to V (G) such that

• the vertices in f(C) are connected in G by edge-disjoint paths and

• for each such path only the endpoints intersect f(C).

It is conjectured that for every graph G, χ(G) ≤ i(G) [81, 1] and it is known [49]
that χ(G) < 3.54 ·i(G)+4. Recall that δ∗(G) denotes the degeneracy of G. Inspired by

Reed’s conjecture (χ(G) ≤
⌈

∆(G)+ω(G)+1
2

⌉
for every graph G), we show the following

weaker result.

Theorem. For every graph G,

χ(G) ≤
⌈
i(G) + δ∗(G)

2

⌉
≤
⌈
i(G) + ∆(G)

2

⌉
.

The short proof uses Kempe chains. In this appendix we use the following defini-
tion of a Kempe chain. Given a proper colouring c of a graph G, a vertex v ∈ V (G)
and given two colours a, b, the ab−Kempe chain in G containing v is the maximal
connected subset K ⊆ V (G) containing v such that each vertex in K is coloured either
a or b. Since the colouring is proper, the colours have to alternate along each path in
the Kempe chain. Moreover, note that swapping the colours in the Kempe chain yields
another proper colouring of G.

Proof of Theorem
Suppose the theorem is false and let G be a counterexample that minimizes |V (G)|+
|E(G)|. Then χ(G) > r :=

⌈
i(G)+δ∗(G)

2

⌉
and for all e ∈ E(G) we have χ(G − e) ≤⌈

i(G−e)+δ∗(G−e)
2

⌉
≤ r, where the second inequality follows because both i(G) and δ∗(G)

are nonincreasing under edge-removal. In fact we have χ(G− e) = r for all e ∈ E(G),
because otherwise χ(G− e) ≤ r − 1 and then we could recolour a vertex incident to e
to obtain an r−colouring of G; contradiction.
Let w be a vertex of minimum degree in G. Note that 1 ≤ deg(w) ≤ δ∗(G). Consider
an edge uw ∈ E(G). Since G − uw has chromatic number r, it follows that G has
a proper vertex-colouring c with r + 1 colours such that w is the unique vertex with

113
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colour c(w) = r+ 1. In N(w), each colour in {1, . . . , r} must occur, since otherwise we
could recolour w with one of the missing colours, yielding the contradiction χ(G) ≤ r.
It follows that at least r − (deg(w) − r) ≥ 2r − δ∗(G) neighbours of w have a unique
colour among N(w). Let x1, . . . , xB denote these neighbours. Suppose there is a pair
xixj for which the c(xi)c(xj) Kempe chain containing xi does not contain xj . Then
we can swap colours along the Kempe chain to remove the colour c(xi) from N(w),
enabling us to recolour w to c(xi), again obtaining χ(G) ≤ r; contradiction. It follows
that for each pair xixj there is a c(xi)c(xj) Kempe chain containing xi and xj , and thus
there is a path from xi to xj with alternating colours c(xi), c(xj). Note that this path
cannot intersect w or any vertex of {x1, x2, . . . , xB} \ {xi, xj}, since those vertices are
not coloured c(xi) or c(xj). Furthermore, note that these paths must be edge-disjoint.
It follows that KB+1 is a strong immersion of G and so G has a strong immersion of a
clique of size B + 1 = 2r − deg(w) + 1 ≥ 2r − δ∗(G) + 1 > i(G), contradicting that G
is a counterexample.
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sind. Wissenschaftliche Zeitschrift, Martin Luther Universität Halle-Wittenberg,
Mathematisch-Naturwissenschaftliche Reihe, 10:114–115, 1961.

[12] B. Bollobás and S. E. Eldridge. Packings of graphs and applications to compu-
tational complexity. J. Combin. Theory Ser. B, 25(2):105–124, 1978.

115



116 BIBLIOGRAPHY

[13] B. Bollobás, S. Janson, and A. Scott. Packing random graphs and hypergraphs.
Random Struct. Alg., 51(1):3–13, 2017.

[14] B. Bollobás, A. Kostochka, and K. Nakprasit. On two conjectures on packing of
graphs. Combin. Probab. Comput., 14(5-6):723–736, 2005.

[15] B. Bollobás, A. Kostochka, and K. Nakprasit. Packing d-degenerate graphs. J.
Combin. Theory Ser. B, 98(1):85–94, 2008.

[16] J. A. Bondy and M. Simonovits. Cycles of even length in graphs. J. Combinatorial
Theory Ser. B, 16:97–105, 1974.

[17] W. Cames van Batenburg. Almost sure bounds for the mass dimension and
discrete hausdorff dimension of the incipient infinite cluster. Master’s thesis,
Leiden University, 2013.

[18] W. Cames van Batenburg. The dimension of the incipient infinite cluster. Elec-
tron. Commun. Probab., 20(33), 2015.

[19] W. Cames van Batenburg, L. Esperet, and T. Müller. Coloring jordan regions
and curves. SIAM J. Discrete Math, 31(3):1670–1684, 2017.

[20] W. Cames van Batenburg and R. J. Kang. Packing graphs of bounded codegree.
arXiv:1605.05599, 2016. To appear in Combin. Probab. Comput.

[21] W. Cames van Batenburg and R. J. Kang. Squared chromatic number without
claws or large cliques. arXiv:1609.08646, 2016.

[22] W. Cames van Batenburg and R. J. Kang. The Bollobás-Eldridge-Catlin conjec-
ture for even girth at least 10. arXiv:1703.05149, 2017.

[23] E. Candellero and A. Teixeira. Percolation and isoperimetry on roughly transitive
graphs. arXiv:1507.07765, 2017.

[24] P. A. Catlin. Subgraphs of graphs. I. Discrete Math., 10:225–233, 1974.

[25] P. A. Catlin. Embedding subgraphs and coloring graphs under extremal degree
conditions. ProQuest LLC, Ann Arbor, MI, 1976. Thesis (Ph.D.)–The Ohio
State University.

[26] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect
graph theorem. Ann. of Math., 164:51–229, 2006.

[27] M. Chudnovsky and P. Seymour. The structure of claw-free graphs. In Surveys in
combinatorics 2005, volume 327 of London Math. Soc. Lecture Note Ser., pages
153–171. Cambridge Univ. Press, Cambridge, 2005.

[28] M. Chudnovsky and P. Seymour. Claw-free graphs VI. colouring. Journal of
Combinatorial Theory, Series B, 100(6):560–572, 2010.

[29] M. Chudnovsky and P. Seymour. Claw-free graphs VI. Colouring. J. Combin.
Theory Ser. B, 100(6):560–572, 2010.



BIBLIOGRAPHY 117
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[99] M. Śleszyńska-Nowak. Clique number of the square of a line graph. Discrete
Mathematics, 339(5):1551–1556, 2016.
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Samenvatting

Dit proefschrift gaat hoofdzakelijk over het efficiënt kleuren van grafen, maar behan-
delt ook een probleem uit de percolatietheorie. Ieder hoofdstuk bevat de inhoud van
een artikel en kan afzonderlijk gelezen worden. Deze samenvatting is bedoeld voor
de wiskundig onderlegde leek. Voor meer algemene achtergrond en een uitgebreider
overzicht van de verkregen resultaten verwijs ik u graag naar de introductie (Hoofd-
stuk 1). Voor nog meer details kunt u de abstracts en introducties aan het begin van
ieder hoofdstuk lezen.

Grafen zijn formele representaties van netwerken, bestaande uit punten en lijnen die
paren punten verbinden. Een punt wordt ook wel een knoop genoemd en een verbind-
ing tussen knopen heet ook wel een tak. Een voorbeeld is de vriendengraaf, die een
knoop heeft voor ieder mens en een tak heeft tussen twee knopen dan en slechts dan
als de corresponderende mensen bevriend zijn. We nemen hier optimistisch aan dat
‘vrienden zijn’ een symmetrische relatie.

We kunnen kleuren toekennen aan de knopen van een graaf. Zo’n kleuring noemen
we correct als iedere twee takverbonden knopen verschillende kleuren hebben. Het
chromatische getal χ(G) van een graaf G is het minste aantal kleuren dat nodig is om
de graaf correct te kleuren.

In dit proefschrift bekijken we verschillende canonieke verzamelingen van grafen.
Binnen zo’n verzameling identificeren we de (vermoedelijke) graaf of grafen met het
hoogst mogelijke chromatische getal en vervolgens bepalen of benaderen we de waarde
van dat getal.

Het chromatische getal van een graaf G is altijd ten hoogste ∆(G)+1, waarbij ∆(G)
de maximale graad van G is, het maximale aantal buurknopen dat een knoop in G kan
hebben. Er bestaat ook een natuurlijke ondergrens: het chromatische getal is altijd
ten minste het kliekgetal ω(G) van G, hetgeen gedefinieerd is als het grootste aantal
knopen dat paarsgewijs verbonden is door een tak. Samengevat hebben we dus dat
ω(G) ≤ χ(G) ≤ ∆(G) + 1 voor alle grafen.

Gegeven een graaf H kan men gëınteresseerd zijn in de klasse van grafen van max-
imale graad ten hoogste ∆ die H niet als deelgraaf hebben. Zelfs als we voor H een
simpele graaf als de driehoek nemen (drie knopen en drie takken), dan nog is het geen
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eenvoudige opgave om het chromatische getal van de corresponderende klasse te be-
grenzen. In de jaren negentig is bewezen dat het chromatische getal voor grafen G in
deze klasse ten hoogste C ·∆(G)/ log(∆(G)) is, voor een zekere constante C. De best
mogelijke bovengrenzen in termen van ∆(G) zijn niet bekend.

Het kliekgetal is een lokale eigenschap van een graaf en daarom vaak makkelijker te
bepalen dan het chromatische getal. Gegeven een klasse grafen G zijn we daarom blij
als er een nietdalende functie f bestaat zodanig dat χ(G) ≤ f(ω(G)) voor alle grafen
G in G. Als dit zo is dan heet de klasse χ−begrensd.

Laat G een graaf en laat a en b knopen zodanig dat ac en cb takken zijn, voor een
zekere derde knoop c. Als men voor elk zulk paar knopen {a, b} de tak ab toevoegt
aan G verkrijgen we een nieuwe graaf die het kwadraat van G heet. Het kwadraat van
G wordt ook wel geschreven als G2.

De lijngraaf L(G) van G is de volgende graaf. De knopen van L(G) zijn de takken
van G en de takken van L(G) zijn de paren takken in G die een knoop gemeen hebben.

Een klassiek resultaat is dat ∆(G) ≤ χ(L(G)) ≤ ∆(G) + 1 voor alle grafen G. Het
chromatische getal van lijngrafen is dus zeer gedetailleerd bekend. Het kwadraat van
de lijngraaf is echter veel minder goed begrepen. Het volgende vermoeden van Erdős
en Nešetřil uit de jaren 80 speelt een centrale rol in dit proefschrift. Erdős en Nešetřil
vermoedden dat χ(L(G)2) ≤ 5

4∆(G)2 geldt voor alle grafen G. Als het vermoeden
klopt dan is het ook de best mogelijke bovengrens, vanwege zekere grafen genaamd
opgeblazen vijfcykels. Een eenvoudig argument geeft dat χ(L(G)2) ≤ 2∆(G)2 voor alle
G. De beste bekende bovengrens (die geldt voor alle waardes van ∆(G)) geeft echter
nauwelijks verbetering, namelijk χ(L(G)2) ≤ (2− ε)∆(G)2 voor een zeer kleine ε > 0.

In hoofdstuk 4 bekijken we de corresponderende vraag voor het kliekgetal. Als het
Erdős-Nešetřil vermoeden waar is dan moet zeker ook gelden dat ω(L(G)2) ≤ 5

4∆(G)2

voor alle G. In stelling 4.1.5 bewijzen we deze bovengrens voor alle driehoek-vrije
grafen. In het zelfde hoofdstuk bewijzen we ook bovengrenzen voor ω(L(G)2) on-
der andere voorwaarden, zoals bijvoorbeeld de afwezigheid van zekere lange paden of
cykels als deelgraaf van G. In die gevallen blijken de extremale waardes van ω(L(G)2)
en χ(L(G)2) wel duidelijk verschillend te zijn. We begrenzen ω(L(G)2) ook in termen
van het zogenaamde Hadwigergetal van G, een niet-lokale parameter die als het ware
de grootste ‘opgeblazen kliek’ van G meet.

In hoofdstuk 3 bekijken we een generalisering van het Erdős-Nešetřil vermoeden.
Een klauw bestaat uit een knoop met drie buren die paarsgewijs niet verbonden zijn
door een tak. In een lijngraaf kan geen klauw zitten. Met andere woorden, alle li-
jngrafen zijn klauwvrij. Het omgekeerde is echter niet waar, dus klauwvrije grafen
vormen een grotere klasse dan de lijngrafen. We beschouwen het a priori moeilijkere
vermoeden dat χ(G2) ≤ 5

4ω(G)2 voor alle klauwvrije grafen G. We bewijzen (voor
kleine waardes van ω(G)) dat dit algemenere vermoeden in feite equivalent is met het
originele vermoeden van Erdős en Nešetřil.
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In hoofdstuk 5 onderzoeken we intersectiegrafen van families Jordanoppervlakken
en Jordancurves. Grofweg kunnen we een Jordancurve definiëren als een gesloten curve
in R2 die zichzelf niet doorsnijdt. Het is een soort vervormde cirkel. Een Jordanop-
pervlak is dan grofweg een opgevulde Jordancurve. Gegeven een familie deelverza-
melingen F = {A1, A2, . . .} kunnen we de intersectiegraaf G(F) definiëren als volgt.
Iedere knoop van G(F) correspondeert met een verzameling van F en er is een tak
tussen twee gegeven knopen dan en slechts dan als de twee corresponderende verza-
melingen niet disjunct zijn. In hoofdstuk 5 beschouwen we de intersectiegraaf G(F)
van een familie F bestaande uit Jordanoppervlakken waarvan ieder paar ten hoog-
ste 1 gemeenschappelijk punt in R2 heeft. Voor deze grafen bewijzen we de scherpe
bovengrens χ(G(F)) ≤ ω(G(F)) + 1 (indien ω(G(F)) ≥ 490). De klasse van deze
intersectiegrafen is dus extreem χ-begrensd. We bewijzen vergelijkbare bovengrenzen
voor zekere families Jordancurves.

Een ander onderwerp dat in dit proefschrift aan bod komt is een vermoeden van
Bollobás, Catlin en Eldridge uit de jaren zestig, hierna het BEC-vermoeden genoemd.
Het betreft een generalisering van een stelling over gelijkkleuringen (equitable colour-
ings in het Engels). Een graaf heet gelijkkleurbaar met k kleuren als de knopen correct
gekleurd kunnen worden met k kleuren, zodanig dat de cardinaliteiten van de kleurk-
lasses paarsgewijs ten hoogste 1 verschillen. Dat wil zeggen, ieder van de k kleuren
wordt aan ongeveer het zelfde aantal knopen toegekend. Hajnal en Szemerédi bewezen
in de jaren zestig een vermoeden van Erdős dat alle grafen G gelijkkleurbaar zijn met
∆(G) + 1 kleuren. Het BEC-vermoeden is een generalisering van deze stelling, in ter-
men van de volgende terminologie. Twee grafen G1 en G2 zijn trouwbaar (packable in
het Engels) als G1 een deelgraaf is van het complement van G2. Men kan veel graafthe-
oretische vragen herformuleren in de taal van trouwbaarheid. Bijvoorbeeld, H is een
deelgraaf van G dan en slechts dan als H en het complement van G trouwbaar zijn.
Het BEC-vermoeden stelt dat twee grafen G1 en G2 met n knopen trouwbaar zijn als
(∆(G1) + 1)(∆(G2) + 1) ≤ n + 1. In hoofdstuk 2 bewijzen we dit vermoeden onder
de extra voorwaarde dat G1 geen viercykel als deelgraaf heeft en ∆(G1) > 34 ·∆(G2).
Algemener bewijzen we dit onder de exclusie van zekere complete bipartiete grafen. Als
bijresultaat verkrijgen we dat zekere klasses van grafen gelijkkleurbaar zijn met ∆(G)
kleuren (in plaats van de ∆(G) + 1 kleuren gegarandeerd door de Hajnal-Szemerédi-
stelling; een verbetering die niet zo marginaal is als het wellicht klinkt).

In hoofdstuk 6 behandelen we ten slotte een probleem uit de percolatietheorie dat
niets van doen heeft met graafkleuringen. Men beschouwt een getal p ∈ [0, 1] en een
graaf G met takken E(G). Vervolgens verkrijgt men een random deelgraaf van G door
iedere tak van E(G) te behouden met kans p en te verwijderen met kans 1 − p, on-
afhankelijk van elkaar. Een cluster in deze random graaf is een maximale verzameling
knopen zodanig dat tussen iedere twee van die knopen er een pad is in de random graaf.
Het cluster heet oneindig als het aantal knopen erin niet eindig is. Veel onderzoek is
gedaan naar de graaf G met knopenverzameling Zd en met een tak tussen twee punten
dan en slechts dan als hun onderlinge (Euclidische) afstand 1 is. Men kan afleiden
dat er een kritieke parameter pc ∈ [0, 1] bestaat zodanig dat met kans 1 de random
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deelgraaf van G geen oneindig cluster bevat als p < pc en één uniek oneindig cluster
bevat als p > pc. Wat er gebeurt in p = pc is een belangrijke open vraag voor dimensies
3 ≤ d ≤ 10. In dimensie d = 2 en in ‘hoge dimensies’ d ≥ 11 is wel veel bekend. We
weten dan dat er geen oneindig cluster is in pc, met kans 1. We beschouwen vanaf
nu het geval d ≥ 11. Het blijkt dat men dan een kansmaat PIIC kan definiëren die
als het ware conditioneert op de gebeurtenis dat er toch een oneindig cluster is in pc.
De afkorting IIC staat voor Incipient Infinite Cluster, wat zoveel wil zeggen als ‘het
zich vormende oneindige cluster’. In hoofdstuk 6 bewijzen we dat het oneindige cluster
4−dimensionaal is, in de zin dat elke bal van (voldoende grote) straal r rondom de
oorsprong ongeveer r4 punten van het oneindige cluster bevat, met PIIC−kans 1. Ter
vergelijking: voor p < pc is het oneindige cluster nonexistent en dus 0−dimensionaal.
Voor p > pc heeft het oneindige cluster plotseling de zelfde dimensie als de hele om-
liggende graaf Zd, namelijk d.
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