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1 Introduction

In this thesis we study nearest neighbour bond percolation on Z% in high dimensions and at the
critical threshold p = p., conditioned -loosely speaking- on the event that the connected component
containing 0 is infinitely large. This component is called the Incipient Infinite Cluster (IIC). The
main goal is to bound the (upper, lower) mass dimension of the IIC. We obtain that it almost surely
holds that the lower mass dimension of the IIC is > 3 and the upper mass dimension of the IIC is
< 4. Furthermore, we introduce a discrete Hausdorff dimension (dHd) and give sufficient conditions
for the dHd of the IIC to be 4. Along the way we also bound dimensions of other random sets like
the backbone (mass dimension < 2) and we present a conditional proof for a sharp almost sure lower
bound on the mass dimension of the IIC, based on a conjecture on certain moment bounds.

1.1 Bond percolation on Z¢

Let |z|. denote the Euclidean norm of z € Z?. Consider the infinite graph with vertex set Z¢ and
set of edges (or bonds) F = {(m,y) | 2,y € Z4 and |z — y|. = 1}. We study bond percolation on
this graph. That is, we fix p € [0, 1] and then each edge e € E is declared open (1) with probability
p and closed (0) otherwise, independently of all other edges. The resulting random subgraph of
open edges has many interesting theoretical properties, but it can also be used to model a variety of
physical phenomena, like transport in porous materials, the electrical properties of ionic conductors
or the spread of forest fires and diseases [1]. Formally, the associated probability space (2, % ,P,)
has sample space Q = []_. 5 {0, 1}, the o-field .7 is generated by the finite-dimensional cylinder sets
and the probability measure is the product measure P, = []_. 5 itp, where p,(1) = p, 1,(0) = 1 —p.
The expectation w.r.t. P, is denoted by E,. Although we will restrict ourselves to nearest neighbour
percolation, as described above, it is to be expected that many results in this thesis can be generalized
in a rather straightforward way to finite-range spread-out percolation and long-range spread-out
percolation [2], which are examples of bond percolation on Z? where additional bonds (z,y) with
|z — yle > 1 are open with a positive probability that is decreasing in |z — yle.

Let {z + y} denote the event that the vertices z and y are connected by a path of open edges. The
connected component or open cluster of x € Z% is defined by € (z) := {y € Z | x > y}. It is well
known [3] that percolation undergoes a phase transition at the critical threshold

pe = inf {p | 6(p) > 0}

where 0(p) := P, (|]€(0)] = o). In our context [4] an equivalent definition of p, is:

pe =sup{p | x(p) < oo}

where
X(p) =Y Py(0 & ) = E, (4(0))
z€Z4

is the expected cluster size. In words: if p < p. then the cluster of 0 is almost surely finite. If p > p,
this is no longer the case; in particular the expected value of the cluster of 0 has become infinite.
What happens at p = p is enigmatic ([3], [1]). It is known that 8(p.) = 0 for the case d = 2 (by
a duality argument) and for d > 19 (follows from a lace expansion). One of the central conjectures
in percolation theory is that this is true too for all d > 2. Another nice property of p., illustrating
the term ‘phase transition’, is that at p. the probability of the existence of an infinite open cluster
dramatically jumps from 0 to 1:

P(3z € Z¢ s.t. [€(z)| = o0) = {0 ifp<pe

1 ifp>pe.
Futhermore, if 8(p) > 0 then P, (there is exactly one infinite open cluster) = 1. Finally we remark
that calculating p. is a nontrivial problem for d > 2; so far this has only been possible for d = 2, in
which case duality arguments show that p. = 1/2. One could argue that this calculation has been
possible because the value 1/2 is ‘easy’.



Understanding percolation at p = p. becomes less complicated in ‘high’ dimensions d, because then
the clusters obtain tree-like properties; the probability of large cycles of open edges becomes very
small, so a cluster in the percolated graph will resemble a connected graph without cycles: a tree. As
a consequence, percolation on Z? with high d behaves in many ways like percolation on an infinite
tree. An explicit notion of high-dimensionality is given by the triangle condition, which is satisfied
if the following triangle diagram

S B0 6 ) -Pyle ¢ y) - Byly > 0) (1.1)

z,y€Z4

is finite for all p < p.. The triangle condition is believed to be satisfied whenever d > 6, but so far
it has only been proved to hold for d > 19 and only recently for d > 15, in case of nearest neighbour
percolation [5], [6]. For finite-range spread-out percolation, provided the spread-out parameter is
chosen large enough, there does exist a proof that the triangle condition holds for all d > 6 [7].

1.2 Some notation, the BK-inequality and the two-point function

The volume of a subset A C Z¢ is denoted by |A| := # {z € A}, but for a vertex z € Z? we let ||
denote the supremum norm of x. The choice for this particular norm is not essential, as all norms
on R? are equivalent and almost all estimates in this thesis hold up to a constant multiple, but is
taken fixed to avoid confusion and because of the useful property that |z| € N for all € Z9.

For x € Z% and r € N the ball with centre x and radius r is the following vertex set
Qr(z):={ye 74 such that |z —y| < r}.

Its boundary is
9Q,(z) == {y € Z such that |z —y| =r}.

In case x = 0 whe just write Q,-(0) = @, and 0Q,-(0) = 0Q);-.

For a configuration w in the sample space © = {0,1}” and a bond e € E we write w(e) = 0 if e is
closed and w(e) =1 if e is open. An event A C 2 is called increasing if for any two configurations
w1, ws € ) that satisfy wy(e) < wa(e) for all e € E, it holds that (w; € A) = (w2 € A). An example
of an increasing event is {0 <> z}. Indeed: if wy € {0 <> 2} and w; < ws then all bonds that are
open in w; are also open in ws, so any open path in w; also exists in wsg, so wy € {0 +> x}.

Let A, B C Q. Then the event that A and B occur on disjoint sets (or: occur disjointly) is given by
Ao B := {w € Q] there exists F' C E such that wp € A and wg\p € B},

where for any configuration w € 2 and any edge subset F' C E:

Juw(e) forecF
wrl(e) = 0 for e ¢ F.

Example: the (increasing) event {0 <> z} o {0 > y} occurs iff there exist two open paths that don’t
share an open bond, one of which connects z to 0, while the other connects y to 0.

The Van den Berg-Kesten inequality [3], commonly referred to as the BK-inequality, states that for
any two increasing events A and B:

P, (Ao B) <P,(A)-P,(B). (1.2)
Often we will bound the probabillity of a complicated event by the probability of disjoint occurrence
of other events, which in turn can be bounded above using the BK-inequality.

For nonegative functions f(t),g(t) we write f(t) < g(¢) to denote that c¢- g(t) < f(t) < C - g(t)
holds asymptotically for some constants ¢, C' > 0. Typically these constants are not optimized and
therefore the symbols ¢ and C will often be used for different constants, even within a single proof.



For x,y € Z% we define the two-point function
Tz —y) =Py (r e y)

For nearest neighbour percolation in dimension d > 19 (and for finite-range spread-out percolation
in dimension d > 6) a strong result on the asymptotics of 7(z) is proved in [8],[9]. We will only need
its implication that for those dimensions:

T(x —y) =< |z —y|"7% (1.3)

It can be shown that (1.3) implies that the triangle condition (1.1) holds and, just as with the
triangle condition, it is widely believed that (1.3) is actually true for all d > 6. From now on we
will assume that our model is high-dimensional, by which we mean that (1.3) is satisfied!

1.3 The Incipient Infinite Cluster

In this thesis we focus on high-dimensional nearest neighbour percolation and we zoom in on what
happens at the phase transition. More specifically: we consider percolation at p = p. and condition
on some event F, that, as n — oo, implies that €(0) is infinitely large. This conditioning can be
done in several ways. For example: one can condition on the event {0 <» =} and let |x| — oco. Recall
that as we let p increase from p. to a value > p., the probability that |4 (0)| = oo goes from 0 to a
positive value. Also, for d > 19 and percolation at p = p. it has been shown that there are typically
some very large but finite clusters near the origin (see [10] for a precise statement). Therefore, by
looking at p = p. and ‘conditioning on the event that €(0) is infinitely large’, we can study €(0) at
the point where it is just becoming infinitely large (with positive probability). Hence we call € (0)
the Incipient Infinite Cluster (IIC) in this context. ‘Conditioning on the event that %(0) is infinitely
large’ typically induces a probability measure, which will be referred to as an (or the) IIC-measure.
Several different but equivalent ways of constructing IIC-measures have been found.

Here we describe three constructions of an I7C-measure. Denote by Fy the algebra of cylinder
events (i.e.: events that are determined by finitely many bonds) and by F the o-algebra of events,
generated by Fg. The first construction is

]P)[[C(F) = lim ]Ppc (F | 0(—)1‘), for F € Fy (14)

|z|—o00

whenever the limit exists. The second construction is

Qrr¢(F) = lim 1

im ) Z P, (FN{0 <« z}), for F € Fy (1.5)

z€Z

whenever the limit exists. The third construction is
RIIC(F) = lim P;Dc (F ‘ 0« é)QT), for F € Fy
™00

whenever the limit exists.

In [11] Van der Hofstad and Jérai proved, under assumption that (1.3) holds true, that the measures
Prre and Qgj¢ exist and are equivalent. That is, the limits Prro(F) and Qrro(F') exist and are
equal for all cylinder events F ; consequently P;;c and Q7o can be extended to the o—algebra
of events o(Fy) = F and Prro(F) = Qric(F) for all F € F. Note however that this does not
mean that we can also evaluate any F' € F\Fp in (1.4) or (1.5) to calculate P;yo(F)! The event
F = {0 <> =} is an exception; it is not a cylinder event, but it has been shown in [11] that (1.4)
nevertheless does hold for this event. Another ‘exception’ is provided by the so called Backbone
limit reversal lemma [2], which we will not use in this thesis. It roughly says that the probability
of any event occurring on (a certain random subset of) the backbone (see Definition 1.5) of the IIC
may be calculated using almost the same constuction as (1.5).

Kozma and Nachmias [12] proved that for high-dimensional percolation, under assumption that
(1.3) holds, we have that
Py, (0 0Q,) <172 (1.6)



and in [2] it is proved that if P,_ (0 <> Q) < r2, then there exists an increasing subsequence 7,
such that the limit Ry;c(F') = limp—o0 Pp, (F|0 <> 0Q),) exists for any cylinder event F'. Further-

c

more, if the measures Pr;eo, Qrrc and Rjre exist, then they are equal.

In this thesis we will actually only make use of the constuctions P;;c and Qr;c. Since they are
equivalent in our context (being that d is such that (1.3) holds) we will from now on refer to both
constructions as P;yo. Furthermore, Ej;o will denote expectation with respect to Prjc.

1.4 Dimensions

Having introduced the IIC probability measures, we now want to determine some properties of
the IIC. A natural question is: how large is the IIC? By construction we already know that it
(Prro-almost surely) is infinitely large, so we cannot simply count all vertices in €(0) to sensibly
determine how large it is. Instead we will try to calculate ‘the’ dimension of the IIC. There is not
just one canonical way of defining the dimension of a subset of Z%. In what follows we introduce
several concepts of dimension and some random subsets of Z¢ of which we would want to calculate
a dimension.

Definition 1.1
The mass dimension of a subset A C 7% is defined as

dm(A) := lim log| AN Qv
r—00 log(r)

if the limit exists. The upper mass dimension of A is

—-— . log |A n Qr|
dm(A) :=limsup ————
“) Ty log(r)
and the lower mass dimension of A is
log |A
i (A) = lim inf 2840 Qrl
ol = B log(r)

Definition 1.2
The volume growth exponent of an infinite connected graph G is defined as

. log|Bo(a, )|
dp(G) = lim =0

)

if the limit exists. Here Bg(xz,r) is the ball, in the shortest-path metric, with center x and

radius 7 and |Bg(x,r)| is its volume. The upper volume growth exponent of G is ds(G) =
log | Be (2,7)|

limsup,._, Toz(r)

Definition 1.3
The spectral dimension of an infinite connected graph G is defined as

. log p,,. ()
=21 —=
dS(G) rgrolo log(r)

)

where p,,.(x) is the return probability of the simple random walk on G after r steps. If the limit
exists then dy is independent of the starting point x € G.

The dimensions introduced above don’t necessarily exist, because of the limits involved. In section 5
we will introduce the discrete Hausdorff dimension dy () (A) of a subset A C Z? with respect
to a function €(r), which does exist for all A. See Definition 5.3. This thesis focuses on the mass
dimension and the discrete Hausdorff dimension.



1.5 Some relevant random sets and quantities we want to calculate

Recall that in the context of the IIC-measure we have that %(0) is infinite and we sometimes write
IIC :=%(0). Let A C Z¢ be a set and let x,y € A, then {:E PELIN y} denotes the event that x and

y are connected by a path of open edges of which the adjacent vertices are all in A.

Definition 1.4
The following is the most central quantity in this thesis, because (moment) estimates on it provide
information on the mass dimension of the IIC:

X, =IICNQ,={z€Q, |0+ z}.

In section 6 we will also study
X, g = {er”O&x}

to find a lower bound on |X,|, because | X, g| < |X,| for all R € N.

Because there is an open path from 0 to infinity in IIC, the following definitions make sense.

Definition 1.5
The edge backbone of the IIC' is defined as

Bb := { ‘directed’ edges (b, ) such that {0 <> b} o {b< oo} and b is open }
The number of edges in the edge backbone at distance at most r from 0 is

|Bb,| := # { ‘directed’ edges (b,b) with b € €(0) N Q, such that {0 <> b} o {b <> 0o} and b is open }

On the other hand, the vertex backbone of the IIC is defined as
Bb* = {xEZd | {0« 2} o{z > o0} }

and
Bb; :={zx € Q, | {0+ z}o{x < oo}}.

Usually the term backbone refers to the edge backbone, but our dimensions are defined for subsets
of Z%. Note however that |Bb,| < |Bb}|, so asymptotic estimates on |Bb,| from literature will also
hold for |BbZ|, up to a constant value, allowing us to estimate the dimension of Bb* C Z.

1.6 Markov’s inequality and Borel-Cantelli

The following are standard results from literature. We will use them in particular to derive the
bounds of Theorem 1.10, stated below. In the proof of that theorem, Markov’s inequality produces
an initial bound on the probability of an event and subsequently Borel-Cantelli transforms it into
an almost sure statement.

Lemma 1.6 (Markov’s inequality [17])
Let X be a non-negative random variable with finite expectation, then it holds for all a > 0 that

E(X)

P(X >a) <

Lemma 1.7 (Borel-Cantelli [17])
Let (An)n21 be a sequence of events in a probability space. If

i P(A,) < oo



then
P(A, io.) =0,

where by definition:

{4, io} = 1i71rln_>sol<1>pAn = ﬂ U A,

i=0n=1

is the event that A,, occurs infinitely often (i.o.), that is: for infinitely many n.

1.7 Results

We start out with some known results, for comparison, and from there work to the contributions of
this thesis. Recall that we implicitly assume that our model is high-dimensional.

Theorem 1.8 ([13])
Pric <ds(HC) = ;1) =1. (1.7)

Proof. This is part of the statement of Theorem 1.1 in [13]. O

Theorem 1.9 ([2], [13])
There exist constants ¢, C > 0 such that for all r > 0:

c-r <Ep, (|IBg(oy(0,7)]) <C - (1.8)
c 1’ <K, (X)) <C -2 (1.9)
et <Epe (X)) <C -t (1.10)

c-r? <Epe (|Bb|) < C 12 (1.11)

Proof. (1.8) follows from Theorem 1.2 and 1.3 in [13]. Claims (1.9), (1.10) and (1.11) are the subject
of Theorem 1.5 in [2]. O

A common property of B0y (0,7)|, | X, | and | Bby| is that they are nondecreasing in 7. We will prove
(see Theorem 1.10.i) that this property allows us to transform the upper bounds on the expectation
values in a.s. statements on upper dimensions.

Theorem 1.10
Let Z1, Z,, ... be a sequence of random variables with values in R+, such that Z; < Zy < ...
(i) If there exist constants 3,C > 0 such that at least one of the following two conditions holds
e E(Z,) < C-rP forallr >0.
o P(Z.>\-1P) §C-% for all \,r > 0.
Then:
P (limsup (log,(Z,)) < ﬁ) =1 (1.12)

T—00
(ii) If there exist constants a,C" > 0 such that at least one of the following two conditions holds

.E(

° IP’(ZTS%-r“)gCl-%foraH)\,r>0.

Then:

Zl) <C -r for all 7 > 0.

P (liminf (log,(Z,)) > a) -1 (1.13)

T—00



Corollary 1.11

Py (df(€(0)) <1) =1 (1.14)
Py, (dn(€(0)) <2) =1 (1.15)
Pric (dm(IIC) < 4) =1 (1.16)
Pric (dn(Bb*) < 2) = 1. (1.17)

Proof. Apply Theorem 1.10.i to the upper bounds in Theorem 1.9. For the implication from (1.11)
to (1.17) also use that Bb, =< Bb}. O

Note that (1.14) and (1.15) are actually trivial: as %'(0) is almost surely finite at p = p. we have that
ds(€(0)) and d,,(€(0)) both almost surely equal 0. Still, (1.14) illustrates that the applications
of Theorem 1.10 are not limited to bounding the mass dimension of a random set. The bounds in
(1.16) and (1.17) are believed to be sharp and as matter of fact this thesis is all about trying to
prove it.

Conjecture 1.12

Prrc (d(IIC) = 4) = Pryc (dn(Bb*) = 2) = 1

and the same values hold P;rc-almost surely for the discrete Hausdorff dimension.

On first sight it may look like the lower bounds of the form ¢ - r®* < E(Z,) in Theorem 1.9 will
provide the complementary statements on the lower dimensions that are necessary to prove the
conjecture for the mass dimension, but this is not true. What we actually would need are, for
example, statements of the form IE(%) < C-r~?, because then we can apply Theorem 1.10.ii to
conclude that almost surely: liminf, ., (log,.(Z,)) > «. In fact, bounds of the form c¢-r* < E(Z,)
(without any other knowledge) provide almost no information on lower dimensions, as the following
example illustrates.

Example 1.13

Let € > 0. Let Zy,Z,,... be a sequence of random variables with values in R>; and let P be any
probability measure such that for all » € N it holds that P(Z, = r® -log(r)) = logl('r‘) and P(1 <
Z, <17 ) =1- @. Then there is a constant C' such that for all r:

1 a—€e, —
ogm) T (1 Tog(r)

r* <E(Z,) < r%log(r) ) <C-re.

But we have lim,_, o P(log,.(Z,) = o) = 0, so log,(Z,) does not converge in probability to «, so it
certainly doesn’t converge almost surely to a. In effect, we see that the existence of constants ¢, C
such that ¢-r® < E(Z,) < C - r® (without any other knowledge) implies almost nothing about the
limit probability distribution of log, (Z,): a priori it could be any probability distribution on the
interval [0, !

So it turns out that bounding the mass dimension from below is quite a difficult task.

Using moments for a.s. lower bounds on the lower mass dimension of a random set

In Theorem 2.10 we perform a complicated computation of an expectation value, based on the
technical results in section 2. An important corollary is that there exists a constant C' > 0 such
that for all r,n € N:

(2n)!

Erro(|X, ") < C-
1e(IXe[") < € 5=

Erre(1X:)" (1.18)

We will use the case n = 2 to prove:



Theorem 1.14
There exists a constant C' > 0 such that for all A > 1 and all r:

Erc(|X, 1\?
PHC(|X7~2H0)\(||)>ZC'<1_>\>-

The general case of inequality (1.18) provides us with intuition on the exact values of E;ro (] X,|™). In
subsection 3.2 we formulate and motivate a conjecture for these moments. Because the conjectured
values for the moments (ﬁ"}l:) turn out to grow very fast as a function of n, a method for bounding
the lower mass dimension of a random subset of Z% is derived, based on a rather special function
whose power series converges fast enough. In particular we apply this to the IIC-measure and the IIC
itself to investigate conditions on the moments Erro(|X,|™) under which log,.(]X,|) would converge

in probability (Corollaries 3.7 and 3.8) or almost surely (Corollary 3.10) to 4.

Bounds on the discrete Hausdorff dimension of a random set
In section 5 we define the discrete Hausdorff dimension dy () w.r.t a function €(r) and we prove
Lemma 5.4, which states that for all A C Z%:

dH,e(r)(A) < %(A) (1'19)

Furthermore, we derive a variant of the so called energy method to find an almost sure lower bound
for the discrete Hausdorff dimension of any random subset of Z%: see Lemma 5.6 and Theorem
5.7. To find these lower bounds explicitly one ‘merely’ needs to calculate a certain expectation
value. In particular we apply this to the IIC-measure: combining the energy method, Cauchy-
Schwarz and an important corollary of the expectation value computation in Theorem 2.10, we
obtain Corollary 5.13, which states that Conjecture 1.12 holds true for the IIC, provided that
Erre(|X,|7*) < C - e(r)=2°7716 holds for § = 0 or for all § > 0.

Volume growth exponent and lower mass dimension of the I1IC

Based on (1.8), Markov’s inequality and their result that ¢- 2 < P, (0Bg(o)(0,7) # 0) < C - 1,
Kozma and Nachmias proved [13] that there exists a C' > 0 such that for fixed » > 1 it holds for
all z € Z* with || sufficiently large and all A > 1 that: P,_(Brrc(0,r) > X 7?04 2) < C - 1
and P, (Bric(0,7) < 1 -7r?|0 4> 2) < C- 5. Therefore we may apply Theorem 1.10 ((i) and (ii)) to
conclude that the volume growth exponent of the IIC almost surely equals 2:

Theorem 1.15 (Kozma and Nachmias [13])

Pric (df(IIC) =2) =Pric (Tlgrglo (log U;I;(C;()O’T”) = 2) =

Inspired by the techniques used by Kozma and Nachmias we derive Theorem 1.16. The reason why
our bound is not yet as sharp as the result of Theorem 1.15 is, probably, that the nature of the ball
Brre(r) (with respect to the shortest-path metric in the random graph formed by the IIC) allows
for finding certain nice independent events, while these events become dependent when translated
to the ‘ball’ ITC N Q, (recall that @, is the ball with respect to the deterministic metric induced
by the supremum norm). This dependency is caused by the fact that for a set A C @, the event
{A=1ICNQ,} may also depend on edges that are outside @,. We circumvent this problem by
considering only points in @), that are connected to 0 by a path within @, that is: we bound | X, ,|
instead of | X,.|.

Theorem 1.16
There exists a C > 0 such that for all r > 1 and 0 < e < 1:

Prrc(| X <e %) < C e
and as a consequence, because | X, .| < |X,| for all r:

Prrc (dm(11C) > 3) = 1.



Our strongest rigorous unconditional results on the mass dimension and discrete Hausdorff dimen-
sions of the IIC can now be summarized as:

Corollary 1.17

Pr1c(3 < dpn(IIC) <dpn,(IIC) <4)=1
and for all functions €(r) for which dy ¢y is defined it holds that

PIIC(d’H,s(r)(IIC) < dm(IIC) < 4) =1

1.8 Motivation for Conjecture 1.12

Why the conjecture that d,,(ITC) = 4 and d,,(Bb*) = 2 and that the same values occur for the
discrete Hausdorff dimension, P;;c-almost surely? Before we present some motivations: first note
that -provided the mass dimension exists- it would suffice to bound the discrete Hausdorff dimension
from below by the conjectured values. Indeed, we know (Lemma 5.4) that the discrete Hausdorff
dimension is bounded above by the upper mass dimension, and the upper mass dimensions of the
IIC and the backbone Bb* are already almost surely bounded above by their conjectured values
(Corollary 1.11).

The conjectured scaling limit of the IIC, respectively the backbone, has Hausdorff
dimension 4, respectively 2.

In (]20],[21],[22]) Hara and Slade approach the IIC by taking the scaling limit of increasingly large
but finite clusters at p = p.. This involves shrinking the lattice spacing as a function of the cluster
size n in such a way that for n — oo a (nontrivial) random subset of R? is produced. In order to
achieve this, the lattice spacing is scaled down by a factor n'/P# | where Dy = 4 is the presumed
Hausdorff dimension of the IIC. This procedure is analogous to the way in which Brownian motion
in a time interval [0, 1] can be constructed [14] as a limit of an increasingly long random walk on a
lattice, in which case the lattice spacing is scaled down by a factor n'/? because Brownian motion
almost surely has Hausdorff dimension 2.

Let z € R be fixed. Hara and Slade showed that in sufficiently high dimension, the probability
that a site L:z:nl/ 4| is connected to the origin in a cluster of size n corresponds, in the scaling limit
n — 00, to the mean mass density function of integrated super-Brownian excursion (ISE) at x.
ISE is a random probability measure on R?. For d > 4 the support of this random probability
measure almost surely has Hausdorff dimension 4 [15]! This suggests that the scaling limit of the
IIC is ISE and almost surely has discrete Hausdorff dimension 4. As it turns out though this is
difficult to prove; it already is very complicated and laborious to explicitly derive the scaling limit
of P, (A) for just the two events A = {[zn'/*|is connected to the origin in a cluster of size n} and
A= {[zn'/*] and |yn'/*|are connected to the origin in a cluster of size n}.

As to the backbone, it is conjectured and a proof is being prepared [16] that its scaling limit is
Brownian motion, which almost surely has Hausdorfl dimension 2 [14], supporting the conjecture
that the backbone almost surely has discrete Hausdorff dimension 2.

Aizenman: the maximal spanning cluster in Q, is of order r*

Let 0Q; = {(x1,...,24) € Qrlx1 =7} and 0Q, = {(z1,...,74) € Q.|v1 = —r} be the ‘left’ and
the ‘right’ boundary of the cube Q,. A spanning cluster is a cluster (collection of interconnected
vertices) that intersects both 9Q;" and 9Q;F. Define |€ N Q;|mas as the maximal value of |4 N Q.|
where the maximum is taken over all clusters ¢ that intersect both 9Q; and 9Q;".

In [10], Aizenman sketches a proof that in any dimension d > 6 for which assumption (1.3) holds
true, the spanning probability tends to 1 as r — oo and:

lim P, (o(r) < 1€ N Qrlmazr < c-log(r) ~r4) =1 (1.20)

T—00

for any function o(r) which tends to 0 as r — oo.

10



So although we know that there is no infinite cluster for percolation at p = p., the result of
Aizenman shows that there are arbitrarily large spanning clusters; for all r there typically exists
a (finite) cluster that is of order r* and spans the box Q,. So everywhere in Z? there are finite
clusters that are locally of the order that is conjectured to hold for the (infinite) IIC. From Figure 1
and translation invariance it even becomes clear that the event in (1.20) implies that there almost
surely is a cluster of order r* that intersects the boundaries of the nested cubes Q, and @, /2-

aQ, \,-| 0 Q]

Q r2

Q,

Figure 1: For critical percolation in dimension d > 6 there exists a (mazimal) cluster that spans
the ball Q, and has < r* vertices in Q,., with probability tending to 1 as r — oco. In this picture both
the ball Q, and a translated ball with radius r/2 are spanned by an open path.

1.9 Approaches that didn’t work

Tweaking Aizenmans proof

It would come as no surprise that the lower bounds on Aizenman’s maximal cluster survive if we
consider the probabilities w.r.t. P;;c instead of P, as this - so to speak- only adds a connection
between 0 and co. But of course a stronger result is preferred; we want to know whether [I7CN Q.|
is also of order r*. However, the intricate dependency on the vertex 0 that lies at the heart of
both the IIC-measure and the IIC itself causes the kind of moment bounds in Aizenmans proof
to fail fatally; relevant events A, B that say something about the magnitude of the IIC typically
involve the connection of some vertex with 0, but this very property makes that these events don’t
occur disjointly with high probability, so Pr;o(A not disjoint B) ~ Pr;c(A N B), while Aizenmans
proof relies on events for which P, (A not disjoint B) < P(A N B). A second problem is that the
BK-inequality, frequently used in Aizenmans proof, does not need to hold for the IIC-measure, but
this is less severe because we can always use a construction of the IIC-measure in terms of P,_, for
which the BK-inequality does hold.

Explicitly: Aizenman writes

2

CNQ[€NIQS[€NIQ, | _ H:
Yo € NOQE] - € NIQr | K,

where the summation is over all clusters € that intersect @),.. Subsequently it is shown that

K, 2 E, (K2) - E, (K,)? d+6
Em((E_l)): po(K2) By (K)? _ () om0

|<g m ermax Z

pe (K7r) Ep. (K:)? GO

leading to lim, o, P, (O%A)Td <K, < o(r)rd> = 1 for all positive functions o(r) with lim,_, o(r) =

0. Together with a similar result for H, (and Markov’s inequality) this shows (1.20). The most
difficult step is bounding E,_(H?2) — E,_(H,)?; it involves several applications of the BK-inequality
and convolution bounds.

One of the many ways it has been tried, in vain, to bend this proof in order to let it work for

bounding the IIC is simply writing:

’

S ICN Q| [€NAQY|-|€NdQ; | _ H,

IIcnaQ,| = : .
| @l Y € NOQT| - € NOQ| K,

11



Zero one laws and (in)dependence

A zero-one law states that, under certain conditions, the probability that an event occurs is either
0 or 1. The idea behind applying a zero-one law is: first try to prove that Pr;o(d,,(IIC) =4) >0
(which is already difficult) and then use a zero-one law to conclude that Prro(d,,(IIC) = 4) = 1.
The problem is that laws like the Kolmogorov 0-1 law and the Hewitt-Savage 0-1 law ([17]), as
well as approximate zero-one laws ([18], [19]) require independence of certain events and /or they
require specific properties of the probability measure (‘product measure’, ‘monotone measure’ ...)
that are not satisfied by the IIC-measure. As to the independence issue: the inherent role of
the origin 0 in both the IIC and the construction of the IIC-measures introduces weird, some-
times counterintuitive, dependencies. A simple example: let b a bond adjacent to the origin, then
Prro(b is open | all other bonds around the origin are closed ) = 1 # Prro(b is open). The most
promising approach is the following, in which we partially neutralize the dependency on the origin
by considering € (Q,) instead of € (0), using the following 0 — 1 law.

Lemma 1.18 (Proof can be found in [17])

Let (Q, F,P) be a probability space. Let A1, Aa, ... be a collection of events, and let A be the smallest
o-field of subsets of 2 which contains all of them. If A € A is an event which is independent of the
finite collection Ay, A, ..., A, for each value of r, then P(A) € {0,1}.

d
Define €(Q,) := {x € 7Z4\Q,| there is an y € 9Q, such that y Z<ﬁ>r .13} . Provided there is an open
path from 0 to co and there exists exactly one infinite cluster (which is true P;;c-almost surely), it
holds for all » > 0 that

dm(%(Qr)\Qr) =4& dm(%(o)) =4

and as a consequence

Finally one would want to apply Lemma 1.18 to A and A; := { bond e; is open } to conclude that
P(A) € {0,1}. The problem is: are we indeed allowed to apply Lemma 1.18; is A independent of the
collection Ay, Ao, ..., A, for each r, with respect to the IIC-measure? Note that if this is true, a slight
adaptation of the proof would immediately yield that for all « it holds that P;¢ (dﬂ (IIC) = a) €

{0,1} and Pyr¢ (dn(1IC) = a) € {0,1}.

Positive probability as in Theorem 1.14 is not strong enough

By Theorem 1.14 we have that for a given 0 < e < 1 there is a constant C > 0 such that
Prrc (|X:] > €-Ere(]X,])) > C. So for all radii r we have that |X,| is approximately r* with
positive probability bounded away from zero. At first sight this implies that the mass dimension
of the IIC is 4 with positive probability, but to conclude this one would actually need a stronger
statement of the form Prre (| X,| > €-Erro(]Xr])) > 1 — €(r), such that Y2 €(r) < oo, because
then Borel-Cantelli would imply that P;re(dn(IIC) > 4) = Prre (liminf, o log, (| X,]) > 4) =

Prrc (log,(|X,]) > € r* for only finitely many r) ~ Pric (|X,| < €-Ere(|X,]) i.0. ) = 0.

1.10 Closing remark

For further research we would advise to investigate and generalize the proof of Theorem 1.16 because
it provides, with relatively little effort, our strongest rigorous result on the lower mass dimension
of the IIC. The full potential of the underlying method probably has not been explored yet, as this
theorem came up in the final stage of the research for this thesis.
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2 Technical lemmas, tree diagrams and
moment bounds

2.1 Technical lemmas, convolution and bounding small diagrams

This section is all about technical lemmas on bounds of sums, products and convolutions involving
the function 7(x — y). Recall that 7(z — y) := P,_(z <> y) < |z — y|>~?. From now on we let ||z||
denote max(|z|, 1), for all z € Z4.

Lemma 2.1
Forallk <d,y € Z* and r > 1:

S S X e 2.1)

zEQ, TEQ,

Proof. The function f: @, N (—Q, +{y}) = Q, N (—Q, + {y}) defined by f(z) = -z +y is a
bijection. Therefore

1 1 1 1
2 o —y&=F ~ 2 [F @)=k ~ 2 E. 2 EE
TEQ, errn(_Qr""{y}) erTm(_QT'i'{y}) z€Qy
Y—x€Q, Yy—T€Q,

Furthermore: for all z € @, such that y — z ¢ Q, it holds that ||z — y|| > r > ||z||, so

1 1
- - < - .
2 lz = yll4=* 2 lf}=*

T€EQ, TEQ,
y—z¢Qr y—z¢Qr
O
For generalizations of the results in this section, a bound for more general sets Si,...,S5,,..., of
the form
> R <O )
s i 2 G

would be useful, but unfortunately this doesn’t even hold true for important simple sets like S, =
0@, so we will not pursue this route.

Lemma 2.2
For all k > 0 there are constants ¢, C' > 0 such that for all r > 1:

<2 s eer 22

and 1 1 1

Proof. We will actually prove the slightly more general result stated in (2.7) below. First note that
the Euclidean norm | - |, and the supremum norm | - | are equivalent norms on R?. So there exist
constants ¢, C' > 0 such that for all by,b; € R>q:

1 1 1
e ) |d—k§ > WSC' ) 2T F (2.4)

T T
zezs jfe zezs zezd e
b1 <[w|c<bz b1 <|z|<b2 b1<|w|e<b2
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Furthermore, there exist constants ¢ ,C" > 0 such that for all z € Z%\ {0} and z* € [—1/2,1/2]¢
holds that ¢ - |z|. < |z +2*|c < C - |z|. and also:

d

U C -2 1) o

e U (e [d U e

272
zeR? zezd zeR?

b1 <|z[c<b2 b1 <|z]|e<b2 — Y 4 h <|z] <by+ L

As a consequence we can approximate the outer sums in (2.4) by an integral:

, 1 1 / 1

Cf e TS Y s e s @9
(bmﬂﬂesw> ‘ b<ﬁefib ’ ( Y tbr <Jale <bo+ 42 )

15[T|eS02

Using spherical coordinates in d-dimensional Euclidean space this integral can be calculated:

1
/( zER? >|x‘d kd

by <|z|e<bs

/Zﬂ/ / /b <rd k> rd=tsin?2(61) sin? 2 (4a) . - sin(¢a_2)dr dy ... ddg

—V4—7f— (2.6)

where V' is a constant independent of k,by,bs (and V is equal to d times the volume of the d-
dimensional Euclidean ball with radius 1).

Combining (2.4), (2.5) and (2.6) we see that there exist constants ¢ ,C" > 0 such that for all k # 0
and bo, by such that by > by > @ :

o (V5 —bh) _ L ¢ ((b2 R Ml G @Vﬁ) 2.7
¢ T = Zd W = ’ k ’ ( ’ )
z€EZ
b1 <|z[<bs

To prove the lemma we now merely need to choose the right parameters in inequality (2.7). If we

choose k < 0, by = r and let bo — oo then we obtain (2.3). If we choose k > 0, by = ‘f and by =1

then we obtain (2.2), since we may ignore the (finite and r-independent) sum Z Iezd W
|z < 42

Lemma 2.3 (Convolution bound [23])
If functions f,g on Z% satisfy |f(x)| < |||/~ and |g(z)| < ||z|| =% with @ > b > 0, then there exists
a constant C' depending on a,b,d such that

?unb ifa>d

<C
(9@l < |2z]|2= @+t ifa < dand a+b > d.

Proof. This proof is the same as the proof found in Proposition 1.7 in [23], only with a little more
explanation. By definition,

(Fro@l< S — Ly L1

_ a _ a b
M=yl lyl o Nz =l vl
lz—y|<|yl lz—y[>]yl
Using a > b and the change of variables z = x — y in the second term, we see that
1 1
(Fro@l<2 Y, m—mr (2:8)
=yl iyl

lz—y|<|y|
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In the above summation, |y| > i|z|. Therefore it follows from (2.3) that if a > d:
2b+1 1 W
(fr9@)) <=5 >, ——m=<C-|a™ (2.9)

o 2 Te—ol

lz—y|<|yl

Suppose now that a < d and a + b > d. We split the sum on the right hand side of (2.8) in two
parts.

Case 1: 1|z| < |y| < 3|z|:

1 1 9b+1 1
D < (EIE >

ol =yl llyllP [l =yl
YEZ YyEL
le—y[<|y| le—y|< 3Lzl
Szl <|yl<§ x| -
2b+1 1
- T
[l € Qo [ 2]]
2
C _
< W-IIJBH(‘ ‘ (2.10)

where the last inequality follows from the the bound in (2.2).
Case 2: |y| > 2|z|:
In this case |y — x| > |y| — |z| > % So by the bound in (2.3):

1 1 1 C
Z <3%.9. Z < . (2.11)
—qylle b = atb — a+b—d
i Mz =ll vl o Iyl ]l
lz—y|<|yl| |y|>2lel
lvI>3]z] e
Now evaluate (2.10) and (2.11) in (2.8) to obtain the desired inequality. O

By combining the Lemmas 2.1, 2.2 and 2.3 with the bound (1.3) on the two-point function, we
obtain the following useful bounds.

Lemma 2.4
There exist constants C,C",C" > 0 such that for all y € 72,

(i)
Z T(x—y)SCl- Z T(:E)SC”- Z HSE”%SC-TZ,
TEQr TEQr TEQr
(i) 1
Z (rx7)(x—y) <C - Z (rx7)(z)<C" - Z T3 <C-rt

TEQr TEQr TEQr

and for all s,t € R such that (s+t—1)d —2(s + 2t) > 0,
(iii)
/ 1 1
s t
Z () (rx7)(2) < C - Z (|| (s+B)d—2(s+28) <C- r(s+t—1)d—2(s+2t) "
TEQr TEQr

The estimates in Lemma 2.4 are already sufficient to bound Er;¢(|X,|) and Erro(]X,|?) from
above, as will be demonstrated in Lemma 2.16. But to bound other expectations, like E;je (] X,|™)
for general n € N, we need a more inductive approach to bound a so called tree diagram (see the
next subsection for its definition). At the basis of this inductive approach are the following technical
Lemmas 2.5 and 2.7, that -in particular- bound two small ‘diagrams’ that are the building blocks of
an arbitrary tree diagram. See Figures 2 and 3.
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~

X®

Xo @ O
Z

z 0 z 0
Figure 2: These tree diagrams illustrate Lemma 2.5. The vertices z,0 and x are fized. The dots
denote other vertices and edges of the tree diagram that are mot involved in the computation of

Lemma 2.5. The left hand side is summed over all x5 € Q, N Qr(x) and zo € Z. Up to a constant
value it is bounded above by min(k*,r*) times the right hand side.

X® X,
X1@ O o X1 ®
> o=() . o=() .

Figure 3: These tree diagrams illustrate Lemma 2.7. The vertices z,0 and x are fixed. The dots
denote other vertices and edges of the tree diagram that are not involved in the computation of
Lemma 2.7. The left hand side is summed over all x5 € Qr, N Qr(z) and 22 € 7% and x, € Qr, -
Up to a constant value it is bounded from above by max(k*,r3) times (the right hand side summed
over 1 € Qy, ).

Lemma 2.5
There is a constant C such that for all z € Z%,z € Q,, k,r € N:

Opr(2,x) := Z (2 — 22)7(22 — x2) < C - min(k*, 7).

T2€Q,
|z—z2|<k
zzeZd

Proof. The substitution u := x5 — 2 and the equivalence |x — x3| < k < 29 — x € Qy, yield

Z Z T(z — 29)7(22 —x — )

U+ E€EQr 20€Z%
uEQk

= Z Z (22 — 2)T(u+ 2z — 22)

UEQR 2z9E€ZA
u+zTEQ,

= Z Z T(z2)T(u+ 2 — 2 — 22)

UEQL 2zo€Z4
u+TrEQ,

Z (rx7)(u+2—2)

uEQ
u+zT€EQ,

< C-min(k*,r),

Ok.r(2,2)

where the second equality is just the symmetry of the two-point function and the third equality is

16



the result of summing over z, + z € 7% instead of zo € Z¢. The final inequality follows from Lemma
2.4.ii.

O
The following is an important corollary of Lemma 2.5.
Corollary 2.6
There is a constant C' such that for all z € Z¢,r € N:
Joo,r(2,0) = Z (2 — 22)7 (22 —x) < C -1,
err
ZQGZd
Lemma 2.7
There exists a constant C such that for all z,x € Z¢ and k,r1,79 € N:
Nke,ri,r2 (Z,:L‘) = Z Z z2 = 21)T ( 72— CL‘Q)T(Z —22)
22€7% T1€Qr
126@72
lz—x2|<k
< C-min(k*,r3) - Z T(z — 1) (2.12)
IlEer
and also
Mhrirs(2) = Y > T(a2—2)7(22 — w2)7(2 — 22)
ZQGZd ZE1€QT1
T2€EQr,
|1 —z2|<k
< C-min(k*,r3) - Z T(z — 1). (2.13)

1 EQ7-1

Proof. We will prove inequality (2.12). It turns out that all bounds in the proof remain valid (and
independent of z1) if we replace z by x1 everywhere, thus also yielding a proof for inequality (2.13).

Observe that |z — 23] < k < 23 — x € Qy, so substituting v := xo — x yields

Merirs(z:2) = > > m(m—a1)7(z2 —u—2)7(2 — 22). (2.14)
29€7Z4 TI1EQr
uU+TEQr,
UEQ

We will split the sum on the right hand side in two parts and we will bound them separately.

Case 1: |z — 2| > L|z1 — 7|
In this case there is a constant C' such that 7(zp — 2) < C" - 7(2; — z). Therefore:

Z T(zg —21)T(22 —u—2)7(22 — 2) < C/T(xl —z) Z T(z2 —21)7(22 —u — )

P/ 22€Z4

lwy —=|
lz2—z|> =

/

= C -7(x1—2)- Z T(za+u+x—21)7(22)

ZQEZd
= C (w1 —2) (rx7)(u+z—11). (2.15)
Case 2: |25 — 2| < {z1 — 2|
In this case |22 — 21| > |21 — 2| — |22 — 2| > |21 — 2| — @ — Ia:12—z|. So 7(zg — 1) < C’ -T(z1 — 2).
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Therefore we can apply virtually the same derivation as in Case 1:

E T(za —x1)T(22 —u—2)7(22 — 2) < C/T(.I'l —z) E (20 —u—2)7(22 — 2)
20€7Z% 20 €7
|Z2*Z|S7‘11272|

’

= C m(xy—2) (T*x7)(ut+2z— 2). (2.16)

Finally combine bounds (2.14), (2.15) and (2.16) to obtain the first of the following two inequalities,
and use Lemma 2.4 (ii) for the second inequality:

Megra(,2) < C [ 3 r@—2) | Y (ren)utz—z)+ (rxr)(utz—2)
T1€EQ, UEQ
u+TEQ

IN

" - min (k*,73) - Z T(r1 — 2)

z1€Q

The following is an important corollary of Lemma 2.7.

Corollary 2.8
There exists a constant C, independent of z € Z%,r1,r9 € N, such that:

Noo,r1,r2 (2, 0) Z Z (29 — 21)7(22 — 22)7(2 — 20) < C - 75 - Z T(z — x1).
20€Zd £1€Q 1€Q
$2€Qr2
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2.2 Bounding expectation values by bounding tree diagrams

In this section the main object is to estimate some expectation values, culminating in Theorem
2.10. In doing so we often need to bound functions on vertices that are organized in a treelike
way. Typically we are dealing with an unrooted binary tree on n labeled external vertices (and
n — 2 unordered internal vertices), which we will mostly refer to as a tree diagram on n labeled
vertices. By definition, an unrooted binary tree is a binary tree in which each vertex has either one
or three neighbours. Vertices with one neighbour are called external vertices, while those with three
neighbours are called internal vertices. The next Lemma enumerates tree diagrams on n + 2 labeled
vertices.

ce de ce ce ce
O——C)
d
QP——r) ) @—C) @—C)
a a a a
d_l

éb éb éb éb

Figure 4: On the left the unique tree diagram on three labeled vertices is shown. From this the three
possible tree diagrams on four labeled vertices, shown on the right, can be constructed.

Lemma 2.9

Let n € N and let T(n) denote the number of unrooted binary trees (‘tree diagrams’) on n + 2
labeled external vertices . Then

_ (2n)!

~2n.pl’

T(n)

Proof. Let £(n) be the number of edges in a tree diagram connecting n + 2 vertices. The initial
conditions are 7(0) =1 and £(0) = 1. A diagram 7™ on n+ 3 vertices is obtained from a diagram T'
on n+2 vertices by connecting a new (n+3)-th external vertex to a new internal vertex that is placed
in the middle of some existing edge in T, as depicted in Figure 4. This procedure adds two vertices
and two edges, so: £(n+1) = £(n)+2 and therefore £(n) = 2n+1. Furthermore, in each of the 7 (n)
diagrams there are £(n) edges to choose from to append a new vertex, so T(n+1) = T(n)-&(n) =

T(n) - (2n+1). The solution of this recurrence relation is T (n) = []/=g (2i +1) = HS’MZ!?%‘) = éi"r)z',
i=1 ‘

O

Theorem 2.10
Let C denote the maximum of the constants appearing in Lemma 2.5 and 2.7. For allky, ..., k,, € N
and all r1,...,"m,...,"m+n € N it holds that:

m m—+n m m—+n
e T[] S 1| I S 1] [ e eman) TR T
=1 | z,y€€(0)NQ-,; i=m+1 \z€€(0)NQr, i=1 i=1
‘Ifylgkz

Corollary 2.11
There exist constants C,Cy > 0 such that for all r,n € N:

n

Errc(|1Xr") == Errc Z 1 <Com.
2€%(0)NQr
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Corollary 2.12
There exists a constant C' such that for all r,n, k € N:

n

4n)!
E 1 < CQn . ( L An k4n.
11C Z = 47 (2n)! "
z,y€%(0)NQr
|z—y|<k

Corollary 2.12 is important for the (conditional) lower bound on the discrete Hausdorff dimension
of the IIC, discussed in Theorem 5.12. Corollary 2.11 is in particular interesting for the case n = 2,
because of its application in the proof of Theorem 1.14. In general it serves as an intuition for the
exact value of the moments E;;¢(|X,|™), leading to the conditional bounds on the mass dimension
of the IIC in subsection 3.2.

Corollary 2.13
For all n € N there exist constants C, and C,, such that for all r:

, Erre(|X-™)
C < ——2<(,,.
"7 Erre(I X)) T

Proof. The right bound is Corollary 2.11. The left bound follows from Jensen’s inequality because
x +— " is a convex function on R>q. O

Conjecture 2.14

For all n € N there exists a constant C,,, perhaps equal to %, such that
E X"
lim 7IIC(I ) =C),.

r—o0 Erpo(|X,[)»

Due to the generality of the statement of Theorem 2.10, its proof is rather complex and difficult to
read. Therefore we have also included the simpler proof for the case n = 2 of Corollary 2.11, to
boost the intuition of the reader (see Lemma 2.16). It is advisable to read that first.

In order to prove the general Theorem 2.10 we need the following Lemma.

Lemma 2.15

Let T be a tree diagram on the 2m + n + 2 labeled vertices 0, x1, ..., Zom+n, @. Let T* denote the
reduced tree diagram obtained by deleting « from T, along with the edge that is connected to .
Then it holds for all k1, ...k, € Nand all r1,...,rp, ..., "m+n € N that

S Z Z H (v —w),

T1,02€Qr y--sT2m—1,22m EQryy  21,...,22m 4 n €LY (v,w) in T
Tom41€Qr,, 411 T2m4n€Qr,, 1, 1;,w€{x1 yeer T (2m ) 12150 2 (2mtn) ,O}

such that
|I2i—$21‘71|Sk}1‘ for all ie{l,...7m}

where the product is over all edges (v, w) that are in T*, is bounded above by

m—+n

m

2m—+n 4 4

oo T T]
i=1 =1

Here C again denotes the maximum of the constants appearing in Lemma 2.5 and 2.7.

Proof. The proof is with induction and is build upon repeatedly applying Lemma 2.5 and 2.7. Each
application to T of any one of these Lemmas graphically amounts to removing two edges and two
vertices (one labeled external vertex and one unlabeled internal vertex) from 7%, thus yielding a
smaller reduced tree diagram. For n = m = 0 the reduced tree diagram T* consists only of the
vertex 0. In this case it is natural to set X* = 1 and claim that the lemma is true for n + 2m = 0,
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but to make our induction proof completely rigorous we actually need to show the lemma holds if
n + 2m = 1. We will postpone this and first explain the induction step.

Let N € N and assume that the bound holds for all m,n € N with n 4+ 2m < N. To show: the
bound also holds for all m,n € N with n + 2m = N.

The main observation is that any reduced tree diagram involving labeled external vertices {0, z1, ..., Zom4n }
can be constructed from a reduced tree diagram involving only external vertices {0, z1, . . ., Zom+n} \ {Zadd},
for some z4qq € {0,271, ..., Zom4n}. This can be done using one of the three procedures depicted in
Figure 5. Figure 5a represents an application of Lemma 2.5, while Figure 5b represents an applica-

tion of Lemma 2.7. These constructions are sufficient, because any reduced tree diagram with > 2
labeled vertices is of the form of at least one of the RHS pictures in Figure 5. Note that in all cases

we can identify not only an external node x,4q, but also a corresponding internal node z,4q € Z%.

Case 1: as in Figure 5a.
Before we start to estimate X*, we need to discern two subcases, regarding the nature of x,4q,
which must equal x; for some i € {1,...,2m +n} . In case i € {1,...,2m}, there is an additional
constraint: there exist a vertex xo in T* and an integer kq,qq such that |Zq4q — To| < kaaq. Let’s
address this situation first.

Case 1.1: x44q 18 constrained

In the derivation below Z(”_) denotes [summation over z1, ..., Z(2m+n) € 74, excluding the summa-
tion over zgqq € Z% ], combined with [summation over x1, 23 € Qry,y ..., Tam—1,Tom € Qm,Tami1 €
Qromars - T2mtn € Qry,y,. > excluding the summation over zqqq € Qr,,,], under the constraints |
|xo; — @oi—1| < k; for all i € {1,...,m}, excluding the constraint |zsqq — 20| < kqdq |- Furthermore:

H denotes H

() (v,w) in T
U>w€{rl,-~-’$(2m+n) azla~~~7Z(2m,+n)70}\{zaddyzadd}

Using this notation we reorder the terms in ¥* and then eliminate the dependency on zy by the
uniform estimate provided by Lemma 2.5:

x = Z (1—[) T(v—w) |- Z Z T(Tadd — Zadd) * T(Zadd — 20)

(.2) Tadd€Qryyq  Zada €LY
|Zadd—20|<kadd

H T('U - w) ’ 6(kaddﬂ”add)(207 I,Co)
()

<
Lemma 2.5

()
() \G-)

Here ¥** denotes the sum corresponding to the tree diagram T** one obtains by removing the
vertices Toqq and zqqq and the corresponding edges Toqq < Zadda and zeqq < zo from T*. Note
that the vertex zy has been set free; it has become an ordinary vertex in @,_,,, no longer suffering
from a constraint of the form |x; — xg| < k;. So T** has 2(m — 1) constrained vertices and n + 1
unconstrained vertices.

By the induction hypothesis ¥** < C2(m—D+(n+1) . (kﬁldd I, kf) ( H;ztn T?)' So the desired

bound emerges: ¥* < C?m+n 17 k- H?:{n ri.

K3

Casel.2: xq4qq 18 not constrained
This can be interpreted as a special case of Case 1.1. By assumption the vertex x,q4q is already
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x& Zadd

() =B Z, () =97
() =@ Z, () = Z,
0 0

(a) In this case zqqq lies on the unique edge that is connected to « in the original
(not reduced) tree diagram, depicted on the left.

®Q
Q

! Zadd
() ﬂz* () Zs

o0 0

(b) In this case z44q4 lies on an edge that is not the edge that is connected to «
in the original (not reduced) tree diagram, depicted on the left.

Figure 5: Given a reduced tree diagram on N labeled vertices (Right Hand Sides) we can restore
the original tree diagram on N + 1 labeled vertices by adding vertex o and its adjacent (grey) edge.
In this tree diagram we can always identify an internal verter zqqq and an external labeled vertex
Tadd Such that zqqq is connected to at least 2 external vertices (either Tqgq and T, or Taqq and ).
Removing Taqdq, Zadq and a and their adjacent edges now yields a reduced tree diagram on N — 1
labeled vertices (Left Hand Sides). In case (a), the contribution of Teqq and zqqq to L* can be
estimated using Lemma 2.5 (in case we have the additional restriction that |xeqq — To| < kadd)
or Corollary 2.6 (without that restriction), while in case (b) and (c) the contribution of Teqq and
Zadd can be estimated using Lemma 2.7 (in case of the additional restriction |Taqq — To| < Kada) or
Corollary 2.8 (without that restriction). Remark: the symbols z1 and z. in these pictures are not
important for our calculations; they just denote some internal vertices.
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‘free’, so we can remove the restricion |z,qq — zo| < kqqq in derivation (2.17) and apply Corollary
2.6 to obtain:

o =

(H Tlw—w) |- Y > 7(%ada — Zada) - T(2ada — 20)

(..) Tadd€Qr,qq Zadd €LY

—~
g

1

(H T(U - w) . 6(oo,radd)(Z07 0)

()

—~
g

1

<

< 4
Corollary 2.6 T w -C- Tadd

()
- C (2.18)

721

In this case the new diagram T™* has 2m constrained vertices and n — 1 unconstrained vertices. So
by the induction hypothesis: $** < C?mHn=1 (T ki) ( | r4) So again the desired
add

bound emerges: ¥* < C?mFn [T kE- T[T vt

Case 2: as in Figure 5b.
The proof structure is the same as in case 1. The most important difference is that we apply Lemma
2.7 (resp. Corollary 2.8) instead of Lemma 2.5 (resp. Corollary 2.6).

Case 2.1: xq4qq 18 constrained
Instead of the derivation in (2.17) comes the following

14

—~
g
—
N

H T(v—w) | - Z Z T(Tadd = Zadd) * T(Zadd — ) - T(Zaad — 20)

Zadd€Qryyq  Zadd €LY
7 EQ,*
|Zada—zo|<kada

*Mkaqa,r* radd) (ZOv :CO)

[l
™
=
T
£

—
s
—
N2

Lemr%a 2.7 H T(U - ’LU) -C- kédd : Z T(ZO - I*)

T*EQ*

—
N

where %** in this case denotes the sum corresponding to the tree diagram T** one obtains by
removing from T the vertices x,qq and z,qq as well as the corresponding edges =¥ <> 2444, Tadd <
Zadd and zqqq <> zo, while adding the edge zg <> x*.

This is not entirely correct yet, because we have to pay a little more attention if the labeled vertices
x* and g coincide: in that case 1, .. r..q) (20, Zo) must be replaced by 1 “ roaq)(Z0) in the
second equality. Lemma 2.7 then still provides the (same) upper bound.

add;T

Case 2.2: Tqaqq 18 not constrained
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The derivation in (2.18) must be replaced by:

iy = >

<
Corollgry 2.8 Z H T(U - w) -C- ridd : Z T(ZO - J"*)

T*EQ,*

(— \()
= E** -C- T?ldd

Now we have considered all possible subcases, so the proof of the induction step is finished.

Xadd

ae

¥ Z 2dd

 J0)

Figure 6: Initial condition tree diagram.

T(v—w) |- Z Z T(Tadd — Zadd) * T(Zadd — ") - T(Zadd — 20)
(-.)) Tadd€Qr, g Zadd €LY
r*EQ, *

= Z (H T(U - U)) ' n(oo,r*,radd)(zm O)
()

(2.20)

To complete the induction proof, it remains to clarify that the lemma also holds for the initial
condition (if n +2m =1). If n 4+ 2m =1 then n = 1. So, including the 0 vertex, the reduced tree
diagram has 2 labeled vertices and one unlabeled internal vertex. There is only one such reduced
tree diagram, shown in Figure 6. Bounding this diagram amounts to the same derivations as in
(2.18), with the only two differences that 2o = 0 (instead of an arbitrary point in Z¢) and the terms

2.y 1) and X" are left out. Explicitly:

o= Z Z T(l’add - Zadd) ’ T(Zadd - 0) = 6(0077}1(1@)(0’ 0) S C- Tidd'

Zadd€Qrygq Zada €LY

24



We are ready to prove the main theorem.

Proof of Theorem 2.10

m m—+n
Erre H E: L H Z 1
=1 | z,y€€(0)NQ-, i=m+1 \2€%(0)NQ,
lz—y|<k;
m m—+n
= Emc H E Looa,00y | - H E Loesa
i=1 | z,y€Qn, i=m+1 \z€Q,,
|o—y|<k;
2m+n
= EIIC E H ]]-O<—>xi
T1,22€Qr s, T2m—1,T2mEQpy,  1=1
Tom41€Qr,, 411 T2m4n€Qr,, |,

such that
‘leifiigifllgki for all iE{L...,m}

2m-+n
= > Prc | [ Loon
21,22€Q 1 - T2m—1,T2m EQry, i=1

Tom41€Qr,, 41 T2m4n€Qr,, |,

such that
\mzi—wgi,ﬂgki for all 7;6{1,4..7177,}

— fim & > d P, N (0 s)]. (2.21)

1,22€Q 1 - T2m—1,T2m EQr,, a€Z? s€{z1,...,T2m4n,a}
Tom4+1€Qr, 411 T2m4n€Qr,, |,

such that
|z2;—x2i—1|<k; for all i€{1,...,m}

We proceed by bounding the sum in (2.21). For the vertices in {0, 1, ..., Z2m+n, @} to be connected,
there has to be an unrooted binary tree that connects those 2m-+n+2 labeled vertices. By definition
(see Lemma 2.9) there are 7 (2m + n) of such tree diagrams. Let T denote the j-th tree diagram
with respect to some ordering. Then:

T all vertices that are connected by an
2m+n edge in the unrooted binary tree T}

E Pp ﬂ (0 4 S) < E E IPp (that has external vertices 0,&1,...,2m 1n,

. — B and internal vertices z1,...,22m+n)
agZ s€{@1, s T2mtn,a} I=L oz zampn, €L are disjointly connected in Z¢

By the BK-inequality the probability in the sum on the right hand side is bounded above by

11 P,(v ¢ w). (2.22)

(v,w) in T}
V,WE{0, 1, s T2mpn 12151 22mAn O}

Let T7 denote the reduced tree diagram one obtains by deleting from T; the vertex a and the
(unique) edge that connects o to some internal node z,. Using this notation we can rewrite (2.22)
in such a way that it becomes clear that x(p) := >_ 4 Pp(a <+ 0) can be divided out from (2.21),
which in turn allows for taking the limit p 1 p.:
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lim L Z Py(a > 2q) - H P, (v <> w)

PTPe X(p) aczd (v,w) in T_’/*
V,WE{0,L1 ..., T2mfn, 21501 22mtn
= 11 (v — w) (2.23)

(v,w) in TJT‘

V,WE{0,Z1,...,T2m+4m 21,1 22m+n }

lim —— > (2.22)

ptre X(P) aezd

Combining everything yields:

Tem+n

(2.21) < ;#Iglxlp > > > (2.22)

Z1,T2 EQTI yeesT2m—1,T2m eQr-m Jj=1 z 7---7227n+nvand
T2m41 GQT7n+1 ""’I2m+"€QT7n+n

such that
‘$2i7$2i71‘§ki for all ie{l,...,m}

E?YL+7L
@2 > > 11 (v —w)
j=1 1,22€Q 1 »--T2m—1,C2mE€Qry,  21,...,22m4n ELYL (v,w) in T}
T2m41€Qr 15 sT2mtn €Qrp 4 V,WE{0, L1, ,T2m 421503 22m 4
such that

|Toi—x2;—1|<k; for all i€{1,...,m}

At this point all efforts converge because we can finally apply the most important, hard-fought
and ugliest lemma of this section. Indeed: Lemma 2.15 bounds all of the terms inside the sum
ETM*" (...) by the same factor, yielding:

j=1
m m—+n

(2.21) < Tamyn - C*™ - T K- ] -
i=1 i=1
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2.3 Relatively intuitive and readable proof that E;;¢(|X,[?) < C - r?
Lemma 2.16
There exists a constant C' such that for all r:

Erre(|X:?) < C-Erre(1X,])%

Proof. By Theorem 1.9 it suffices to show that E;;c(|X,|?) = O(r®). Note that

2

Erro(1X,*) = Erro Z Loosa =Erc Z Loosz,0ey | = Z Prrc(0 < 2,0 < y),
TEQy z,YEQr z,YEQr

so by construction (1.5) of the IIC-measure:

Errc(|X,2) = lim — > Y P04 2,04 4,0 ¢ a).
Ptpe Xp EQr aezd

For the four points 0,z,y and « to be connected there has to be a connecting tree, so we can
bound this from above by three sums, which are represented by the diagrams in Figure 7. That is:
EIIC(|XT|2) < X1+ X9 + X3, where

El—hm— Z Z P,(04> 21021 ¢ T 021 4> 22022 63 YO 23 4> Q)

pTp
c Xp T,YEQr 21,20, EZ

. 1
Yo = lim — Z Z P,(04> 21021 ¢ Y021 4> 22029 4> T O 29 4> ()
T,Y€Qr 21,22,a€Z%
Zgzlim— Z Z P,(04> 21021 ¢ 2002063020 > YO 21 <> ).

T,YEQr 21,20,0€EZ

a a

y Z X Z

Figure 7:  From left to right: the tree diagrams corresponding to the sums X1, %o and Xso.

The sums ¥; and ¥, are equal so we only have to estimate ¥; and ¥3. The BK-inequality helps to
get rid of the limit and the factor x,:

s < lm Zx,yEQr Zzl,mezd Pp(0 ¢ 21) - Pp(z1 ¢ ) - Pp(z1 <> 22) - Pp(22 < y) - Do nepa P22 < @)
T piee > aezi Pp(0 < )

Z Z T(z1) - T(® —21) - 7(22 — 21) - T(y — 22).

T,YEQr 21,22€ L%

Ss< Y Y 7 T(ze — 21) - T(x — 22) - T(y — 22).

T,YEQy 21,20€Z2

Similarly:
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We first proceed with the estimate on 3; by reordering the sum, thus essentially separating the
diagram corresponding to ¥ in two smaller diagrams.

S Y Y r(a) @ —2) - A(z)
$EQ7‘ ZlGZd
where

A(z) = Z Z T(20 — 21) - T(y — 22)

YEQ, 20€Z%

= D> > T()Tly—a—2)

yeQ'r -2 €74

= > (rx7)y—=)

YEQr
= O@h).
The final equality follows from Lemma 2.4 (ii).

Since A(z1) is bounded by a term that is independent of 21 it now suffices to bound 3° o > 74 7(21)-
7(z — z1). But this equals 5 ., (7 * 7)(z) which, again by Lemma 2.4(ii), is O(r*). Thus
Y1 = 0@t rt) = O(r®), as desired.

Bounding X3 is slightly more complicated.

g < Z Z T(r—22) | - Z T(y —22) | - Z T(z1) - 7(22 — 21)
22€Z7% TEQ, YyEQr 21 €Z4
= > dSorlw—z) | - (Tx7)(22)
2o €74 TEQ,

We split this in a sum over zo € @2, and a sum over the remaining points in Z%, denoted by z ¢ Qa,..
The estimate of the first sum needs Lemma 2.4(i) and (ii):

> Yora—z)| x)n)| < D r@)] D (FxT)(z)
22€Q2, TEQ, z€Q, 22€Q2r
o((r*)?-r")
= 0@’

For the other sum we use Lemma 2.4(i) and (iii):

2

Z Z T(x —20) | - (7%7)(22) < C- Z (rt - 7(2))? - (1% 7)(22)
22¢Q2r TEQ, 22¢Q2r
y 1\ 1
2d
< o S ()
2¢Qar
1" ].
_ 2d
= Oty s
2¢Qar
< C/// 2d ]_
= " 2a—s
= 0.
Thus 3 = O(r®). So, in conclusion: E;ro (| X, |?) = O(Z1 + X2 + 33) = O(r® + 18 +18) = O(r®).

O
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3 Using moment bounds

3.1 Using moment bounds, Markov’s inequality and Borel-Cantelli for

bounds on the (upper mass) dimension

Lemma 3.1

Let Z1, Zs, . .. be a sequence of random variables with values in R~q. Let g(k) be a positive sequence

such that limy,_, o g(k) = co. Define ry, := [k9(F)|.

(i) If there exist constants 3,C > 0 such that at least one of the following two conditions holds

e E(Z,) < C-rP forallr>0.
o P(Z.>\-rP) §C~% for all A\,r > 0.
Then:

P <1im sup (log,, (Zr,)) < ﬁ) =1.

k—o0

(3.1)

(ii) If there exist constants o, C' > 0 such that at least one of the following two conditions holds

° E(Z%) <C' -r=® forallr > 0.

.« P(Z, <
Then:

%) §C’/'%forall A, > 0.

>

P <hkni1£f (log,, (Zy,)) = a> =1.

(3.2)

Proof. We use the notation Y;. := log,.(Z,). First we prove (3.1). Apply Markov’s inequality (for
the first condition) or set A = r¢ (for the second condition) to conclude that for any € > 0 and r > 0:

Now

So for all € > 0 and all r:

Now we come to the more interesting part of the proof. Let p > 0 and consider the sequence

€ = % 1 0. Then

P(Y, —f>e)<C-r,*<C- (kg(k))*fk —C-k

So

o o O
SR -pza) <3S
k=1

k=1

This means we can apply Borel-Cantelli, which implies:

P (}ﬁnk — [3 Ei €L i.0. ) =0

< 0Q.

So with probability 1: Y,, — 8 < ¢ for all k large enough. Id est:

P (limsup(Yrk) < 5) =1.

k—o0

29

—g(k)(A+u)
g(k)

_C
T Rl

(3.3)



This finishes the proof of (3.1). For (3.2) almost the same argument works, because

(L LB
P(Y,-a<—€=P(Z <r* ) =P ?Zro‘ﬁ < <C . =

—_ r—a—i—s re

holds for all € > 0 and all r. By the arguments used in (3.3) - (3.4) we obtain
P(Y,, —a< —¢ei0. )=0

so with probability 1: Y,, —a > —¢ for all k large enough. That is:

P <liminf(YTk) > a) =1.

k—o0

Proof of Theorem 1.10

Proof. Choose some o € N5;. We use Lemma 3.1, taking g(k) = so that

k
log, (k)°
re = k90| = 198 B0 | = | g9(k)logo (k) | = gk

By Lemma 3.1 we have a.s. convergence on this subsequence ry:

P(limsupY,x <) =1

k—o0

holds under the assumptions of (1.12), while under the assumptions of (1.13) we have:

P(liminf Y, > a) =1

k—o0

(3.5)

(3.6)

As before, the notation Y, := log,(Z,) is employed. We proceed by using the a.s. convergence on
the subsequence 7, = o* and the assumption that Z; < Zy < ..., to show a.s convergence for all

radii r. For a given r choose k such that o < r < ¢**!. Then

_log(Zy) _ log(Zps1) _ log(Zgrer) log(o®th) .. k41
" log(r) — log(o®)  log(oRt1) < log(a®) T Tk
and
_ log(Z,) < log(Zyx)  log(Zyx) log(a*) _y k
"7 Tlog(r) T log(a*t1) — log(ok) log(oFt1) 7Y k41
Therefore
limsupY, = limsup Y, «
r—00 k— o0
and

liminf Y, = liminf Y_x.
r—00 k— o0

Finally: evaluating (3.7) in (3.5) yields (1.12), while evaluating (3.8) in (3.6) yields (1.13).

Corollary 3.2

Prre(limsupY, <4) =1

T—00

In other words, we Prro-almost surely have:

dn(I11C) < 4.
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3.2 Lower bounds on the mass dimension of the IIC, using conjectured
moment bounds

In this subsection we introduce a special function (see Lemma 3.3) that can provide us with a
lower bound on the mass dimension of a random set. After stating results for quite general random
variables, a conditional proof that Prro(d,,(IIC) = 4) is given in Corollary 3.10.

In section 2 it was derived that there is a constant C such that for all n:

Errc(1X,[") _ om . (20)!
]E110<‘XT|)’” - 27 . n!

Recall that this upper bound was derived by bounding E;;¢(]X,|") from above by éinr):, sums of

order Erre(|X,|), each of which corresponds to a tree diagram on n + 2 vertices. There is good
reason to believe that it is possible to derive a comparable lower bound, consisting of sums indexed
by the same éi")l', tree diagrams and each of which is also of order E;;¢(|X,|). This can be done
by the same techniques that were used to derive that Er;c(|X,|) > ¢ - 7* holds: see [2]. To derive
it rigorously for general n would require a massive calculation, involving (infinitely) many bounds,
as the technique resembles an application of the principle of inclusion and exclusion. Although it
is doable we refrain from doing so because the next step, controling the constant C', is beyond our
possibilities at this moment. Therefore we formulate a conjecture. It is conjectured that for all

n € N:

. Ellc(‘Xr|n) 2" . n!
lim . =1 3.9

r—00 EIIC'(‘XTDTL (2n)' ( )
Inspired by this conjecture we investigate conditions under which log,.(| X,.|) converges in probability
(Corollaries 3.7 and 3.8) or almost surely (Corollary 3.10) to 4. That is: the latter result provides
conditions under which the mass dimension of the IIC almost surely equals 4.

Of course it may be that the conjecture is false. In that case this section is not useless, because
most results are first stated for general random variables with values in R>q, yielding conditions for
weak and almost sure lower bounds on ﬁ and log,.(Z,).

Motivation for introducing the function in Lemma 3.3.
Given the values of the moments of a random variable Z and the desire to calculate a ‘probabilistic

lower bound’ of the form P (ﬁ < %) < (...) for some positive A, it is tempting to try to calculate

E (A L ) or E (exp (—)\ . %)), because % and e~® are postive functions on R~ that are large

"E(2)

when z is small and converge to 0 as x — oo. These properties typically cause that P (ﬁ < %) is

Z
N

small whenever E <1> and E (exp (—)\ . ﬁ)) are small. For simplicity: let’s temporarily only

consider the case A = 1. By writing E (@) =E (wéz)_l)> =E (Z:io(*l)n . (ﬁ — 1) ),
1

T+

and naively bringing the expectation inside

we already encounter the first problem; the power series expansion of doesn’t converge if

|| > 1. Trying again with the entire function e~

the sum we obtain F (exp (_L)) ) (EOO (E(ZZ))H) — EOO (—1)" E(Z™) But now there
E(2) n=0"nl E(Z)""

n=0 n!

x

is another possible problem; what if - approximately as in conjecture (3.9) - the moments satisfy

gg)g = éi"l, Then Y7, (_nll)” %Eg)g =30 5(=1/2)" - (") doesn’t converge; the moments just

grow too fast!

To overcome these problems we need an alternative function g(z) which satisfies the following prop-
erties:

- It has a power series expansion that converges everywhere on R>.

- Its power series expansion converges fast enough.

- It is positive and decreasing on R> and goes to 0 as x — oo.
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The following lemma provides such a function.

Lemma 3.3

00 sin(v/x)
L (_1)71 n __ 1- VT
9(x) ";(znm)!x T
is positive and decreasing on R>g and lim,_, g(x) = 0.
Proof. Since x — sin(z) > 0 on Rxg, it follows that g(z?) = %?(m) is positive on R>q. Because

%g($2) — %1—22(7) _ m?’.(1—cos(m));éz—sin(ac))ﬁmz _ 3sin(m)—§§os(m)—21 <0, g(m) is decreasing on

R>¢. The series expansion follows from the Taylor series at 0 for the entire function sin(x). Indeed:
. I =) (=)™ _2n+41 " " Cn

g(a?) = ==tnte) - T Eime G e (A at e A on, 0

n=1 @nil)! =3

Among other things, the next lemma will be used to find conditional lower bounds on the mass
dimension of the IIC. It will serve the role that the Markov inequality had in Lemma 3.1, where the
almost sure upper bound on the mass dimension of the IIC was derived.

Lemma 3.4
_ EZM)

Let Z be a random variable with values in R>g. Define n(n) := B2 If

— (=" _
A5 2 (2n + g =0

then it holds for all A > 0 that

—\)"
p(_ % 1)~ Ym0 ((2n7+)3)s77(n)
E(Z) = X))~  1-—sin(l)

and in particular

Proof.

2o () - (i EE (E(Zm)) -3 g

n=0
where the second equality holds by Dominated Convergence, because the RHS is bounded (for A
large enough).

Because g is strictly decreasing we have for all A:

(e =) 20 ) o).

Since g is a positive function we can apply Markov’s inequality to this equality, yielding:

g(A-e€)

So for all A > 0:

Elg P ZZOZ % (n)
P<E(ZZ) - i> - | (g(l)(z ) - =1 si:(})l)n

and by assumption the RHS converges to 0 as A — oo.
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Lemma 3.5

Let Zy,Z,,... be a sequence of random variables with values in R>q. Let h(r),n(n),d(r) be real
positive functions such that lim,_,. h(r) = oo and vy(z) = Y., (2n+3),77(n) converges for all
xeRIf B(7
" 1
1-46(r) < Blzy) 1 <146(r)

~ E(Z)" n(n)
holds for all r,n € N, and:
lim y(—=h(r)) 4+ d(r) - y(h(r)) = 0,

r—00
then: 7 )
lim P L < —— | = 1
i ® (5 < i) (10
and if additionally there exist constants c, 3 > 0 such that E(Z,) > ¢ -r? for all v, then:
lim P |1 Z,) < log( ) 11
Jim P {log,.(Z,) < B - Tog(r) =0. (3.11)
Proof.
Z E(Z”) _ i (=h(r)*" B(Z7") _ (=h(r))*"*' E(Zz"+)
= 2n+3 Zm = (An+3) E(Z,) (4n +5)! E(Z,)2n+1

(=h(r))>"

RO o)1+ 6(r)) — n(n+ 1)1 = o(r))

M8

— (4n+3)! (4n +5)!
_ o (A" o~ (A(r)"
- z:: Gn 43y M)+l 7;0 2n a1
= (=h(r)) +0(r) - y(h(r)).
Therefore Lemma 3.4 can be applied to conclude that:
oo (=h(r))™ E(Z])
(5= ) < im ZE T 0 00 -0 0
As to the second part of the lemma:
ST < oa(Z) < log (B(Z) ~ g (h(r)
“ log,(Z,) < log, (¢-17) — log, (h(r))
& log,.(Z;) < B —log,(h(r)) + log,(c)

lim P (logT(Z )< g lelhlr) | log(c)) < lim 1@( Zr 1) =0.

r—00 log(r) log(r) r—00 E(Z,) — h(r)
O
In case the ratios of moments IéE((ZZT :;27 don’t depend on r, the result simplifies considerably.
Corollary 3.6
Let Zy,Zs,... be a sequence of random variables with values in R>0 Let h(r) be a positive real

function such that lim,_, o h(r) = co and suppose that n(n) := E(Z )n ( independent of r!) satisfies:

. S _
lim HZ:O mn(n) =0

A—0c0
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Then

Z, 1
lim P z — | =0 3.13
i P (565 < 5) (319
and if additionally there exist constants c, 3 > 0 such that E(Z,) > c-r? for all r, then:
: log(h(r))
lim P (1 7)< B ——=——2]=0. .14
TLIEO (Ogr( 7“) — ﬂ IOg(’l‘) (3 )

Proof. Apply Lemma 3.5 with zero error function §(r) = 0 to obtain (3.13). To obtain (3.14): apply
Lemma 3.5 again, but now with ¢ - h(r) instead of h(r), in order to get rid of the annoying factor ¢
that was necessary in (3.11). O

As aside step: it is interesting to consider Ep := {7 : N = Ry s.t. limy00 Y 0 %n(n) = 0},
which is the set of functions that satisfy the assumption of the previous corollary. First note that Fj

forms a vector space. Besides linear transformations, are there other transformations under which
Ey is invariant? Yes: for all constants ¢ € R we have the equivalence:

(n(n)) € Eo & (n(n) - ") € Ey.

Furthermore, it can be verified that Ey contains many natural functions, for example:

(28). 000, (1) (ha) o

In the next corollary we no longer consider general random variables Z,.. The focus is shifted to the
IIC. The results on the IIC in this section are conditional; its assumptions are believed to hold true,
but may be incorrect.

Corollary 3.7
Assume there exist positive real functions 6(r) and h(r), such that lim,_,~ h(r) = oo and

E[[c'(lXTVL) 2m. n'

1-6(r) < . - <1+ 4(r
( )7 E[]c'(IXT.D" (2”)' - ( )
holds for all r,n € N and
- oh(r)/2
Tl;rglo (r)- OE =0. (3.15)

Then

. | X, | 1 )
lim P < =0
Hmlm(mmw&n—mm
and in particular:

lim Prro [ log, (1X,]) < 4 log(*) _,
TLHolo IIC 0g,. rl) > IOg(’f') — Y,

where c is a constant such that c¢-r* < Er;c(|X,|) holds for all r.

Proof. Our goal is to apply Lemma 3.5 with the choices Z, = |X,|,8 = 4 and n(n) = ﬁ")l', By
definition:

> x)" 2n)! = n 2n)!
1w =2 (2213)! ' 2(n31' =2 @/ (2n(+3))'n'

n=0
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SO

. o (2n)!
'r‘lig}o’)/(ih(r)) - Tll)nolonz 2TL+3)' n'
1 e " -2
- T1i>1£10|: '(1+2r>+ 4r }

= (3.16)
Here erf(z) := f fo ~*dt is the error function encountered in integrating the normal distribution.

We now derive an asymptotic result on y(z), in order to simplify our analysis. It holds that

e (z/2)n 1
7(1')—2 ) '(2n+3)(2n+2)(2n+1)’

n=0
while
e®/? > (z/2)" 1
3 ng() n! 3
(1 11 1 (z/2)"3 [2)°
B <x3+2x2+8x>+8nz%(n+3)! N\
(1 1 1 2 (x/2)" 1
N <x3+2x2 +8$>+nz_:0 n! (2n+6)(2n+4)(2n+2)
Therefore:

(3.17)

For completeness we also give the converse statement, for x — —oo, which can be derived with
similar standard series manipulations; we state it here without proof:

(-
" 5)

— 1. (3.18)
From (3.16), (3.17) and assumption (3.15) it follows that

oh(r)/2
lim 5(~h(r)) +6(r) - y(h(r)) < 0+ lim 5(r) (h()) =

Therefore we are allowed to apply Lemma 3.5, which immediately yields the desired result. O

One of the many possible choices for the functions §(r) and h(r) leads to the following corollary.

Corollary 3.8
Assume:
In(r)? < Erre(JX-™) 2™ - n! In(r)?

1— . '/
ri/2 = Ence(| X)) (2n)! — ri/2

holds for all r,n € N. Then

| Xz | 1
<
E[[C(‘X,«l) ln(r

lim P][c <
T—00

and:

lim Py | log (1X,]) < 4 log(*) —0
TLH;O 1IC Ogr(l r|)_ _W =0,

where c is a constant such that c¢-r* < Erro(|X,|) holds for all r.
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Proof. Take h(r) =1In(r) and d(r) = 1“&2 in Corollary 3.7. and verify condition (3.15). O

In this subsection we thusfar only derived conditional results on convergence in probability. But our
main goal is to prove (under some assumptions) that log,.(] X, |) converges almost surely to 4. This
comes at a price: th i Erre(1X,|7) is i i
price: the necessary assumptions on g-= AR become much stronger. This is mainly
due to relatively minor simplifications that are necessary to perform a general analysis; if the exact

values of % where known, it would probably be possible to derive almost sure convergence

of log,.(]X+|) to 4, even if not all assumptions are met in the conditional results that we derive below.
First we present a result for general random variables Z,..

Lemma 3.9
Let Z1,Zs, ... be a sequence of random variables with values in R>( such that Z; < Zy < ... and
such that ¢ -r? < E(Z,) holds for some constant ¢ and all r € N. Suppose n(n) : N — Rx is a

n

function such that vy(z) := > 7, (2n+3),77( n) converges for all x € R. Let 6(r) : N — Rx( be a
function. If E(Z") )
1-46(r) < = —— <1+44(r)

= Bz =

holds for all r,n € N and if for some o € N, ;x> 0 it holds that:

S (R £ (%) (K < oo (3.19)
k=1

then
P(lim inf (log,.(Z,)) > B) = 1.

00

Proof. Let € > 0. As in (3.12) in Lemma 3.5 it can be derived, with the choice h(r) := r¢, that

P (log,(Z:) < B — € —log,(c))

Il
=
7N N
o
LN
®
IN
e
"

Z, 1
< P < —
- E(Z,) ~ re
< A1)+ () ()
We now choose subsequences r; := o* and € = m, indexed by k£ € N. It follows that

_Adp
,,,Ii:k — glogr(o) — kl’i’N’ SO:

> P(log,, (Z,) < B —er—log, () < D (k") + (%) y(E'TH) < 0.
k=1 k=1

By Borel-Cantelli this implies that:
P (log,, (Z;,) < B — €, —log,, (c) for infinitely many k) = 0.

Note that limy_, o (Ek + log,., (c)) = 0. Therefore:

<hm inf (log,, (Z,)) > 5)

k—o00

Finally we want to extend this result to general r € N. Here the assumption that Z; < Z5 <
becomes necessary. For a given r choose k such that o* < < ¢**!. Then

log(Z,) _ log(Z,x)  log(Z,x) log(o®) i
= - : =1 7)) ——.
log(r) — log(ck+1)  log(c*) log(ok+1) 08,k (Zgn) Pl

logr(ZT) =
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Taking the liminf yields:

k

lim inf (log, (Z,)) = lim inf (loggk (Zox) - k+1> = lim inf (log, (Z5+))

and in conclusion:

P (hm inf (log,.(Z,)) > ﬁ) >P (h}gglor.}f (logr (Zyr)) > 5) =

T—00

Corollary 3.10
Suppose there exists a function 6(r) : N — R>q such that

]EIIC'(|X7”|n) 2" -

1-46(r) < <1+9
)< B @ar < L)
holds for all r,n € N and
0 . e(k2T21) /2
;(5(0 ) - e < 00

is true for some o € N, ;t > 0. Then

Prrc (dm(IIC) = 4) = 1.

Proof. Lemma 3.9 will be applied with Z, = |X,| and n(n) = 2! Note that just as in Corollary

2n.pl*

3.7 we have y(z) == Y0 (z/2)™ - %, so we can use the asymptotic results in (3.17) and

(3.18) to bound y(—k2+2#) 4 §(c*) - v(k2T2#) from above by:

K242 /9 L2420 /9
2. [ /—2 (") - ! =y - k@2 1 0, 6ok e
1k (k242 | T * R

for all k large enough. This weird expression has been fine-tuned so as to make its summation finite;
there exists a K € N such that:

oo k(2+2u)/2
1+(1+2p) 1+(1+2p) .
;C—ZKPY —k 1) 4+ 6(a®) - y(k my < ¢ - Z kuu Zé (e
< o0.

Thus we have verified that condition (3.19) is satisfied, with p* := 1+ 2u > 0. From Lemma 3.9 we

may now conclude that:
Pllc(lin_l}inf (log, (| X)) > 4) =1.
T oo

In other words: the lower mass dimension of the IIC almost surely is > 4. Finally combine this
with the analogous statement on the upper mass dimension (Corollary 1.11) to obtain the desired
statement: Prro (d,,(IIC) =4) = 1.

O
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4 Positive probability lemma

In this section we prove Theorem 1.14 and we investigate an ‘almost independence’ condition under
which it would follow from Theorem 1.14 that Prrc (dm(IIC') > 4) =1.

4.1 For all r it holds that |X,| is of order r* with probability bounded
away from 0

Lemma 4.1
Forall k € Ry1, A € Ryq:

k 1
Erre(1X:]) IN*T [ Erc(|X.))F\ !
Prrc (|X,| > ZHAAA ) S (2 (2R )
e (| = A B A Ere(|1X-|%)

Proof. Write s := w and define Z>; := [X,| - 1|x,|>,- From Hélder’s inequality (with
% + % = 1) it follows that

Eric(Z>s) < EIIC(ng)l/p 'Enc(ﬂfXst)l/q-
Therefore: 1
Er1c(Z>5)1 Erc(Zss)P 7
P Xr > > — = — 4.1
IIC(I | _3) = EIIC(ng)q/p EIIC(ng) ( )
By the definition of Z>, we have
Eric(Z8,) < Erc(|1X:|P)

and for all A > 0:

Errc(Z>s) o Erc(|X:] - 11x,|<s) ~q_ s - 1

Erre(|1Xr]) Errc(1X:]) - Erre(1Xy]) A
Evaluating these two estimates in (4.1) (and writing k := p > 1) yields the lemma. O
Proof of Theorem 1.14
Proof. Evaluate Lemma 2.16 in Lemma 4.1 for the case k = 2. O

Unfortunately we cannot conclude from the previous theorem that the mass dimension of the IIC
equals 4 with positive probability, as we explained at the end of subsection 1.9.

4.2 Adapted Borel 0-1 law for almost independent events

Fix a A > 1 and define the events A, := {\X,»| > %‘XTD} By Theorem 1.14 there exists a C' > 0
such that Prro(A,) > C holds for all r. Therefore one would expect that

Prrc (@(IIC’) > 4) =Pric <lim sup AT> :=Prrc (A, for infinitely many r) = 1, (4.2)

00

because intuitively it seems inevitable that there exists an increasing subsequence (1) in N such
that the events A, , A,,,... are ‘independent enough’, although we were not able to prove such an
independence result yet. In the following we derive a theorem and corollary that make clear what
kind of ‘independent enough’ would be sufficient to affirm claim (4.2).
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Theorem 4.2 (Adapted ‘approximate independence’ Borel 0-1 law)

Let (2, A,P) be a probability space. Let (A;);>1 be a sequence of events in A. Suppose there exists
a C > 0 such that P(A;) > C for all ¢ sufficiently large. Suppose furthermore that there exists a
1<f8< ﬁ such that for all i:

P (Ni<k<itiAr)

l
Z-‘rl (Ak:) < 6

holds for all | sufficiently large, then

P(limsup 4;) =1

Proof. We want to show that P(limsup; A;) = 1, or, equivalently, that
P(limsup 4;) =0

Note that

limsup 4; = Ni>o0 Uj>; Aj = U;i>0 Nyj>q /Tj = UiZOBi'

i
where -
Bi = ﬂ]ZzAj = Al N Bi+1

is an increasing sequence of events. As a consequence

P (limsup Ai> = lim P(B;).

11— 00

It therefore suffices to show that for all fixed i: P(B;) = 0. We will do so using the events
B = Ni<kp<itiAr = A1 N By

that satisfy the following bound. For all [ sufficiently large;

1+1 o
P (Ni<k<itiAr)
P(Bi1) = HP z+z—<Ak)
ax P (Ni<k<i+iAk)
< JIa-Pay)- Hl—
k=i P(Ag)
< (1-0)-p

Because B;; is decreasing in | we conclude that

P(B;) = lim P(B;;) < lim ((1 -0t =o.

l—o00

Corollary 4.3

Fix a A > 1. Let C > 0 be such that Pr;c(|X,| > M) > C holds for all v (such a C exists by
Theorem 1.14). Suppose there exist a constant (3 satisfying 1 < 8 < ;= and a strictly increasing
sequence (ry) in N such that for all i:

E X,
Prrc <ﬂ¢<k§¢+l <|er| < M))
¢ E X,
+l = Pric (|XT | < M)

< g

holds for all | sufficiently large, then

Prrc(d,(11C) = 4) = 1.
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EIIC(\er\) Errc(|Xr, )
A

Proof. Because {|er| < } is the complement of the event Ay := {|er| >

we may apply Theorem 4.2 to conclude that Pr;¢ (limsup; 4;) = 1. From Theorem 1.9 we know
there is a ¢ > 0 such that Er;¢(|X,|) > ¢ r* for all 7, so

Pric (dm(IIC) > 4) = Prrc <1im sup (log,. |X;[) > 4)

)24)

> Prre (logr | X, | >4+ log,, (;) for infinitely many z)
(4

> Prrc (hmsup log,., [ X,

= Prro (A; for infinitely many )

= P]]c (hmsupAZ)
= 1

This, together with the upper bound in (1.16), finishes the proof. O
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5 Discrete Hausdorff dimension

5.1 Definition Hausdorff dimensions

In the year 1919 Hausdorff introduced the notion of what later became known as Hausdorff dimension
[24]. It was a generalization of an idea which had already been introduced in 1914 by Carathéodory,
but Hausdorff realised that Carathéodory’s consruction made sense and was useful, in particular
for defining fractional dimensions [25]. Almost 100 years later, we are living in an age where
applications in science take place on smaller and smaller scales. Materials can be manipulated on
an atomic level, yielding unexpected properties on a large scale. The study of discrete systems,
rather than continuous systems, gains importance. In this light, though only remotely related, it
is of interest to investigate in what ways the concept of Hausdorff dimension can be defined in a
discrete context.

In 1989 Barlow and Taylor [26] defined such a discrete version of Hausdorff dimension for sets in
Z4. Among other things they show that some simple sets (like k—dimensional hyperplanes) have
the expected discrete Hausdorff dimension (k). They calculate the Hausdorff dimension of a set
A by using the mass dimension of A as upper bound and a discrete version of the so called mass
method to find the (same) lower bound. In short, the mass method depends on choosing an optimal
covering of A by cubes, along with an assumption on all cubes, say Assumption X. Unfortunately, in
our probabilistic setting this seems useless; we can show that Assumption X holds with probability
converging to 1 when we choose a cube uniformly at random, but what we actually need is that
Assumption X holds with probability converging to 1 for a cube chosen uniformly among the cubes
in the optimal covering. We cannot control this optimal covering.

In this section we present an alternative discrete Hausdorff dimension on Z¢. Compared to the
definition of Barlow and Taylor it is slightly more flexible. In construction and notation it highly
resembles the usual ‘continuous’ Hausdorff dimension, but it is fundamentally different in that the
discrete Hausdorff dimension of a (countable!) subset of Z¢ may be nonzero. A particular advantage
of the notational similarities, is that it’s relatively intuitive to generalize the energy method [14] for
continuous Hausdorff dimension to an energy method for discrete Hausdorff dimension (see Lemma
5.6 and Theorem 5.7 below). Just as the mass method, the energy method provides a lower bound on
the Hausdorff dimension, but in a probabilistic setting it is much more powerful because it suffices to
calculate a certain expectation value. For example, in the continuous case this method is employed
to show that Brownian motion almost surely has Hausdorff dimension 2 [14].

Since this is primarily a thesis on a percolation subject and not on Hausdorff dimension, we will not
elaborate on general properties, differences between various definitions, consistency issues, Hausdorff
measures, etcetera. Our main goal is to calculate the discrete Hausdorff dimension of a certain
random subset, the IIC, of which the discrete dimension will be shown to be equal to 4 a.s. under
the assumption on the value of E;;c(]X,.|~*) stated in Corollary (5.13). Unfortunately, due to the
fact that even calculating expectation values is hard when dealing with the IIC, this big assumption
remains necessary.

The majority of this section involves results that hold for a rather general probability space with
probability measure P. Only at the end, where the Hausdorff dimension of the IIC is calculated, it
is necessary to use Pyj¢.

Before introducing the discrete Hausdorff dimension we recall the definition of the usual continuous
Hausdorff dimension, for comparison. Let (X,m) be a metric space. For any subset U C X, let
diam(U) := sup, ,cp {m(z,y)} denote its diameter. For a subset A C X and any real a,e > 0,
define

AC U U; such that diam(U;) < e}

i=1

HE(A) := inf {i diam(U;)

where the infimum is over all countable covers of A by open sets U; C X. The Hausdorff dimension
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of A is then defined by

dy(A) = sup {a | imsup HE(A) = oo} .
el0

In the discrete context, the role of the covering sets U; will be taken by the following cubes.

Definition 5.1
For a vertex x = (z1,...,24) € Z% and n > 1 we set

T(x,n):{yeZd|xi§yi<xi+n}. (5.1)

We call T'(x,n) the cube with base x and diameter n. If T is a cube we denote by s(T') the diameter
of the cube, with respect to the metric induced by the supremum norm.

For comparison:

Definition 5.2
The Barlow and Taylor discrete Hausdorff dimension of a subset A C Z% is defined as

dp(A) := sup {ar | mq(A) = oo}

where

ma(A)zgjlmin i(sgj)f AﬂSnCGTj

i=1 j=1

and S, := Qan—1 \Q2n—2. The minimum is taken over all covers of AU S, by any set of cubes T}
that are of the form (5.1).

Now we finally introduce the discrete Hausdorff dimension that we will use in this section.

Definition 5.3
Let €: N>1 — Rsq be a function such that lim,_, €(r) = 0 and €(r) > % for all r. The discrete
Hausdorff dimension with respect to ¢(r) of a subset A C Z¢ is defined as

dyy,e(r)(A) == sup {a

limsup HS,(4) = oo} ,
r—00

e(r)

where

?(T)(A) := min Z <S(Z}))a ANQ, C UTJ such that s(T3) < €(r)
J j

r

Here the minimum is taken over all covers of AN Q, by any set of pairwise disjoint cubes T; that
are of the form (5.1).

Note that in the definition of H?(r) it suffices to take the minimum, rather than the infimum. Indeed:

AN Q, can be covered by a finite set of cubes By, ..., B, for which ¥ := Zj (@) . There are

only finitely many cubes T; such that s(T) < ¥, so there are also finitely many covers of AN Q,

”

by cubes T1,T5,... such that }, (@) < 3.

In the remainder of this section: whenever a function is denoted by €(r), it is assumed that it satisfies
the requirements stated in Definition 5.3.

Lemma 5.4
(The discrete Hausdorff dimension is smaller than or equal to the upper mass dimension)
Let A C Z%. Then for all e(r):

dyge(r)(A) < dm(A).
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Proof. Let o > 8> d,,(A). Recall the definition of upper mass dimension to see that [ANQ,.| < r?
for all r large enough. Now cover ANQ, by |ANQ,| cubes T; with diameter s(7;) = 1. These cubes

all satisfy the requirement S(T ) — 1 < €(r) in Definition 5.3. It follows that H¢ o < Zj (S(?f))(x =

‘AOQ | <7 2 for all v large enough. So limsup,._,, Hg,) < limsup, 7 A= = 0. Sody () (A) < .
NOW take the limit o | d,, (A). O

So by Corollary 1.11 we know in particular that the discrete Hausdorff dimension of the IIC is
almost surely < 4.

5.2 Discrete energy method

In this subsection we derive a discrete variant of the energy method, which in the next subsection
will provide a lower bound on dy c(,y(A).

Definition 5.5
A mass distribution p on a metric space E is a measure on E such that 0 < u(E) < oo.

Lemma 5.6

(Energy method for discrete Hausdorff dimension)

Let a >0, let A C Z% and let . be a mass distribution on the metric space (AN Q,.,m), where m
denotes the metric induced by the supremum norm. Then for all r € N>;.

n(ANQ.)?
T o ff dp(z)dp(y) °

7n(T y) <e(r) max(m(z,y),1)™

He (4) =

Proof. Suppose T1,T5,. .. is a pairwise disjoint covering of A N @, by cubes of diameter < e(r)r,
such that - s,,(7;)® is minimal. Then

wint I},
//W<e(r) max(m Z T; xT; max( ,y = > Z (5(T ))

T

Now we bound (AN Q,):

mANQy) <Y (T, Z( )a/Q ( n(T5)

/2’
j j S(TJ)>

T

Applying Cauchy-Schwarz and then using that Z (s(T )) is minimal, yields:

WANQ,) Z( ) ;(L((Tz})); < He (A //m(w . ma;ff,fgf‘g)‘y)l)

O

A notable difference with the original energy method, for the usual ‘continuous’ Hausdorff dimension,
is that we used the factor max(m(x,y), 1) rather than m(x,y). We do this to prevent division by
zero which would otherwise occur in the denominator of the right hand side for natural measures
on Z% like the counting measure. This would render the statement trivial and useless.

Usually the energy method is formulated for general metrics m. Since we will only use the ‘Man-
hattan’ metric induced by the supremum norm and to prevent unnecessary complicated notation
we have refrained from describing the discrete energy method in such generality.
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The next step is to apply Lemma 5.6 with the counting measure. Let p. denote the counting
measure on Z?. Also, from now on we write m(z,y) = |z — y| for all z,y € Z%. It follows that:

o (AN Q)2 AN Q.7
He(r)(A) > o dyi (2)dpin (y) = @ (52)
T —_— N P AT T
JI e vy maxtma), D7 Z‘w,yeléﬂ(Q)r (qux_y\rn)
z—y|<e(r)-r

5.3 Almost sure lower bounds for the discrete Hausdorff dimension of a
random set A C Z¢

In the following Lemmas we derive results for random sets. In the context of the IIC, relevant
examples of random sets are the cluster of the origin A = IIC and its backbone A = Bb*.

Theorem 5.7
Let A C Z¢ be a random set. If for all o < B:

«
Y 2yeAnQ, (ﬁ)

lim F 1<|z—y|<e(r) T

Jim ANQ,P =0

then
P(dH,E(T)(A) > B) =1L

Proof. Let a < 8. Equation (5.2) implies that
. [e% 71
Jimm, B ((He<r>(A>) ) =0
This implies by Fatou’s Lemma that

-1
E <1im inf (’HS(T)(A)) ) -0
S0 »
P <lim sup He(,)(A) = oo) =P (hm‘inf (’H‘:(T)(A)) = 0) =1

SO
P(dsg.e(ry(A) > @) = 1.

O

The statement of the previous lemma can be made a little more symmetric by writing |A N Q,|? =

> e yeang, (1)- We can disect the statement even more by defining

2ryeang, (1)

lz—y|=Fk
Ba(r,k) =E | =——~ |,
Zm,yeAﬁQr (1)

because N
2. ayeAnQ, (m) Le(r)r]

1< [z—y|<e(r)r =3 Bk (C)a_ (5.3)

E
Zx,yeAﬂQT (1) k=1 k
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Lemma 5.8
Let A C Z¢ be a random set. Let 6(r) : Nsg — R>q be any function and let B € R. If there is a

constant C' such that for all k,r it holds that Ba(r, k) < C - % -d(r), then

P (dﬂ,e(r)(A) > St;p{ lim §(r) - e(r)?~ = o}) =1.

=00

Proof. Let o < sup,, {lim, o0 8(r) - €(r)?~* = 0}. Then:

Ler] Le(r)r]

: ™\ B—a-1
s 5B ()" < 0 S5
< ¢ lim 20 (e(r)r)P—

r—$00 T‘fﬁ_a

= 0.

In the second inequality we used that for all v > —1 one has > ,_; k7 = O(r"™!). Indeed:
Shoo k7 < [0k —1)7dk = O(r" 1) if v < 0, while Y5 _, kY < [ (k+ 1)7dk = O(r*1) if
v 2 0.

Now the lemma follows by equality (5.3) and Theorem 5.7. O

Corollary 5.9
If (as we conjecture) there exists a constant C such that for all k,r € N it holds that Brrc(r, k) <
C- ’:j—z, then:

PIIC(dH,E(T)(IIC) > 4) =1,

irrespective of the function €(r).

Proof. Apply Lemma 5.8 to the infinite cluster (IIC), with d(r) = 1 and 8 = 4. O

Lemma 5.8 is already a useful simplification but typically it is still hard to bound B4 (r, k) for random
sets like the IIC. As will become clear later in Theorem 5.12, it is relatively easy to bound the sum

2 zyeanq, (1)
Errc % = Zszl Ba(r, k). In order to make such a bound useful for our purposes

we will need a variant of Lemma 5.8, namely the upcoming Theorem 5.11. First a technical lemma.

Lemma 5.10
Let f(k) : Nsog = R>¢ be a decreasing function. Let g(k) : Nsog — R>¢ be any function. Suppose

there exist 5 > 0,C > 0 such that for all K: Zszl g(k) < C - KP. Then for all K:

K

K
D gk (k) <C-> (K = (k—=1)%)- f(k).
k=1

k=1

Proof. Consider functions of the form h(k) : Nsg — R>¢, with the constraint that for all KX > 0 :
Zle h(k) < C - KP. Because f(k) is decreasing, Zszl h(k)f(k) is maximized by subsequently
maximizing Zizl h(k),Zizl h(k), . ..Zszl h(k), with maxima C - 1%.C - 2% ... C - KP. As a
consequence h(k) = Zi:l h(z) — Z’;;} h(z) = C - (k® — (k —1)?) holds for all k if Zle h(k)f(k)

is maximal. O

Theorem 5.11
Let A C Z% be a random set. Let 6(r) : Nsg — R>o be any function and let 5 € R. Suppose there

exists a constant C such that for all r, K € N it holds that Zszl Ba(r,k) <C- IT(—: -6(r). Then:

P (dH,E(T)(A) > sgp{ lim o(r) - e(r)ﬁf& = O}) =

r—00
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Proof. Let o < sup,, {lim; 00 6(r) - €(r)?=* = 0}. Apply Lemma 5.10 with the decreasing function
f(k):= (3)* and the function g(k) := Ba(r, k). Since Zszl g(k) < %ﬁm - K? it follows with the
choice K := ¢(r)r that:

&
>
—
3
>
N
/N
>0
N—
Q
IN
Q
B
—
=3
=
—
=
@
|
—
=
[
—
=
S
~—
/N
==
N—
°

< c"’ -6(r) Spe=B. (e(r)r)ﬁ_a
= " 0(r) - e(r)e

for some constants C', " independent of 7. In the third inequality we again, as in Lemma 5.8, used
that for all v > —1 one has 22:1 kY = 0@+,

We conclude that

Zl<m|)y€A‘2Q(T) (ﬁ) Le(r)r] o
lim E <|z—y|<e(r)r = lim IB%A(T7 k) . (,)
7—>00 Zw,yeAﬂQ,, (1) 300 ; k-

lim C" - 8(r) - e(r)?—

T—00

= 0.
An application of Theorem reffirstderivationofenergymethod to this equality wraps up the proof. [

5.4 Conditional proof of the discrete Hausdorff dimension of the IIC

Until now, this section treated results that are quite general and don’t necessarily have something
to do with our particular probability measure, or even percolation. In the next theorem we use the
expectation value bound of Corollary 2.12; thereby introducing a result that holds specifically for
percolation under the IIC-measure. We obtain almost sure statements on the value of the discrete

Hausdorff dimension of the IIC, under an as yet unverifiable assumption on the value of Er;¢ (ﬁ) .

Theorem 5.12
Let 6(r) : N — R>1 be a function. Assume there is a constant C such that for all r:

1 52(r)
Erre (|X7’|4) <C- 16 (5.4)

Pric (dy,e(r)(HC’) > sup{ lim §(r) - e(r)*~ = O}) =1

r—00

Then:

Proof. The following derivation first uses Cauchy Schwarz and then assumption (5.4) and case n = 2
of Corollary 2.12.

> wyerrong, (1) )
E2 _ lw—ylsk — 2 - 1
II1c E (1) IIC |X7'|2 Z ( )
z,yeIICNQ, z,yelICNQ,
lz—y|<k

< Enc (|X1T4>~EHC >

2yl ICNQ,
lz—y|<k

IN
Q
(o9
—~
E
N
S
3
™
0



So

K > ewerreng, (1) i
z—y|<K
S Burctr b = o tih ) <o Ky
k—1 Zx,yGIICﬂQT( ) r
Now apply Theorem 5.11 with 8 = 4. O

Corollary 5.13
Let 6 > 0. Assume there is a constant C such that for all r:

1 —20
Erre (|X |4> <C- 6(:)16 : (5.5)

Then:
Pric (dq.[ye(r)(IIC) >4 — 5) =1 (5.6)

and in particular, if the assumption is true for all 6 > 0 (or for § = 0), then it P;;c-almost surely
holds that:
dy,e(ry(I1C) = dp,(11C) = 4.

Proof. Apply Theorem 5.12 with §(r) = €(r)~° and note that sup,, {lim,_, €(r) =% - €(r)4=® = 0} =
4 — ¢ because by definition: lim,_, €(r) = 0. This finishes the proof of (5.6).

Lemma 5.4 ("Hausdorff dimension < upper mass dimension”) and Corollary 1.11 ("upper mass

dimension < 4”) conclude the proof that Pr;c-almost surely: dyy () (11C) = d,,,(11C) = 4.

It remains to show that the lower mass dimension P;;o-almost surely equals 4. Note that by
Markov’s inequality and because (by definition) e(r) > 1, it follows that for all € > 0:

1 r4e—16> Ejjc(lxl |4)

C
> = —
X5~ e(r) pAe—T16¢(p)—25 = pdc’

Prro(|X,]| < 147279 < Pre(|X,] < r*=Ce(r)?) = Py (

so by Theorem 1.10 we have that P;;¢ (liminf, o (log, (| X,[)) >4 — g) = 1. Since this by assump-
tion holds for all § > 0 (or for § = 0) it follows that P;;c-almost surely: d,,(IIC) = 4.

O
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6 Lower bound on |X, |

This subsection is about Theorem 1.16. To prove it we will bound the IIC-measure of the event
{\Xm| <e- T?’}. Note that this is a cylinder event, so we are allowed to use construction (1.4). The
proof heavily relies on the result of Kozma and Nachmias [12] that for high dimensional percolation
(that is, in models for which (1.3) holds):

Py, (0 <5 0Q) < 2. (6.1)
First we (re)state some definitions.
Definition 6.1
Xr g = {er”O%x}
0X, p = {x €0Q, |0 x}

and more generally, for any A C Z¢ we write
0A:= AN 8Q(maxw€A |])

and we define A to be the set of edges that have both vertices in Q(maxoc4 |2), at least one of which
is in A.

Proof of Theorem 1.16

Proof. For the moment, fix a vertex z € Z? with |z| > 2r. If 0 <+ 2 and |X,.,.| < €73 then there
must exist a (random) integer j € [r/2,7] such that 0 < [0X ;| < |0X;,| < 2¢-r?. Fix the smallest
such j. We call A C Z¢ admissable if P, (X;; = A) > 0. Here {X;; = A} is an abbreviation for
the event

{X;; = A and j is the minimal integer in [r/2,r] such that 0 < |0.X; ;| < 2¢-r*}.
Now write

Pp. (| Xor| < er®,0 43 2) = Y P (X =A04 1)
A admissable
= Y P (00| X;;=4)P,(X;; =4). (62)
A admissable

We proceed by bounding P, (0 <+ z|X; ; = A). If 0 <> x then there exists an y € 0X; ; such that y
is connected to = “off X; ;”, that is: y is connected to # by an open path that does not use any of
the edges in X ;. So

PPC(OH$|XJ‘J:A)S ZPPC (nyOHZ|Xj,j:A). (63)
yEOA

Now: for all admissable A and all y € 0A the event {y < z off Z} only depends on the edges

that are not in A, while {X;; = A} only depends on the edges that are in A. Indeed, since A is
admissable it already holds that j is the minimal integer in [r/2,r] such that [0Q; N A| < 2er?, so
{X,,; = A} occurs iff

All edges that have exactly one vertex in A and both vertices in Q("“a"meA |z|) are closed and all vertices in
A are connected to 0 by a path consisting of open edges that all have both vertices in A.

occurs, which implies that {X; ; = A} only depends on the edges in A, as illustrated in Figure 8. The
consequence is that the events {X;; = A} and {y < x off A} are independent. This observation
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is the reason why this proof works for the set X,., and not -for example- for X,, because now it
follows from (6.3) that

P02 | X;,;,=A) < Z Py, (y <> z off A). (6.4)
yeEOA
By the assumption on x we have |z —y| > |z| — |y| > || —r > Iiz‘, SO
1
ZIP (y <>z off A) < ZPpc(ny Z |d2_C' |0A] - e (6.5)
yeEIA yEOA yeaA

which is bounded above by C'-2er? - ‘w‘% because A is admissable. Combining this with (6.2) yields

1
Pp. (‘Xr,r| <er’ 04 x) <C-er”- W . Z Py (X5 = A). (6.6)

A admissable

Now note that the events {X; ; = A1} ,{X,; = A2}, ... are disjoint and the union of these over all
A implies that 0 <> 9Q,./2, so by (6.1):

> P (X =A) <P (04 0Q, ) <C 12 (6.7)
A admissable

Evaluating (6.7) in (6.6) and using construction (1.4) of the IIC-measure we finally obtain

) Pp. (| Xrr| < €r®,0 > ) e |z[*~7
]P) Xr r < . 3 = l Pe : — ! < C N 1 T o—dq = C )
e (| X <e-17) oo P,. (0 <> z) jal o0\ [z[2 ‘

where the constant C' > 0 is independent of € and r. Now apply Theorem 1.10 and use the fact that
| X, | <|X,| for all r to conclude that

log | X, log | X,
Prrc (d(I1C) > 3) =Py (lim inf (C’g"> > 3) > Pro <1im inf (Og|> > 3) -1

r—00 logr =00 log r
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Q,

Figure 8: This picture illustrates the proof of Theorem 1.16. This is an ‘artist impression’, not a
simulation. Note also that in reality we consider high dimensional percolation, not 2-dimensional
percolation. The vertices that are adjacent to fat blue edges form the vertex set X;; = A. The fat
blue and the thin blue edges together form the edge set A. The fat blue and the red edges together

form the IIC. The symbol O denotes the origin and y denotes one of the 6 vertices in 0A C 0Q);.
The green lines denote the boundaries of Q,/2,Q; and Q.
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