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5 Hard Squares Model als ééndimensionaal probleem 35

6 Monte Carlo 38

7 Resultaten 40

8 Discussie 44



1 Inleiding

Het Hard Squares Model is een model dat in een veelheid aan contexten gëınterpreteerd
kan worden: in de statistische fysica fungeert het als model voor adsorbtie van atomen,
moleculen of ionen aan een oppervlak met vierkante roosterstructuur of als model voor een
magneet, in de wiskunde geeft het informatie over het aantal onafhankelijke verzamelingen
in een roostergraaf en kan het beschouwd worden als een betegelingsprobleem. In deze
scriptie wordt de partitiefunctie van het Hard Squares Model op drie manieren benaderd:
met Row Transfer Matrices (RTM’s), Corner Transfer Matrices (CTM’s) en een Monte
Carlo simulatie. Alvorens dieper op de achtergronden in te gaan geven we de belangrijkste
definities.

Definitie 1.1
Een matrix A heet correct als hij binair is en voor alle viertallen indices i, j, i′, j′ zodanig
dat |i− i′|+ |j − j′| = 1 geldt dat A(i, j) ·A(i′, j′) = 0.

In andere woorden: een correcte matrix bevat alleen 1-en en 0-en en nergens staan 1-en
direct naast of boven elkaar.

Voorbeeld 1.2 1 0 0 1
0 1 0 0
1 0 1 0

 is een correcte matrix, maar

 0 1
1 0
1 0

 en

 0 0
1 1
0 0

 zijn dat niet.

Een interessante, maar verrassend moeilijke vraag is: hoeveel correcte M × N matrices
bestaan er voor gegeven M en N? Algemener staat in deze scriptie de volgende functie
centraal.

Definitie 1.3
Laat M,N ∈ N. De (groot canonieke) partitiefunctie behorende bij de verzameling correcte
M ×N matrices is gegegeven door

ZM,N (z) :=
∑
m

g(m,M,N) · zm

waarbij g(m,M,N) := # {correcte M ×N matrices die precies m 1-en bevatten}.

Opmerking 1.4
Een M ×N matrix A zullen we ook een M ×N rooster noemen, om het onderscheid met
de matrices die met A geassocieerd zijn te verduidelijken. Verder zullen we met het gewicht
van een rooster A bedoelen: z#{1-en op A} indien A correct is, en anders 0. De partitiefunctie
ZM,N (z) is de som van de gewichten van alle M ×N roosters.

Waarom een partitiefunctie?
Een partitiefunctie is een gewogen toestandssom, in dit geval de som van de gewichten van
alle mogelijke roosters. De partitiefunctie van Definitie 1.3 hoort bij een specifiek rooster-
gasmodel, namelijk het Hard Squares Model. Een gesloten vorm voor (de asymptotische
groeifactor van) ZM,N (z) is waardevol, want uit de partitiefunctie kan met standaardtech-
nieken allerlei fysisch relevante informatie gehaald worden, zoals de gemiddelde dichtheid
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of de aanwezigheid en aard van faseovergangen in een systeem. Een model heet ’exact
opgelost’ als zo’n gesloten vorm gevonden is. Er zijn relatief weinig roostermodellen ex-
act opgelost. Het Hard Hexagon Model (1980, Baxter), het 8-Vertex model (1971, Baxter),
het dominosteenbetegelingsmodel (1961, Kasteleyn) en het 2-dimensionale Ising model zon-
der extern magnetisch veld (1944, Onsager) zijn beroemde uitzonderingen [1]. Het Hard
Hexagon Model is opgelost met behulp van zogenaamde Corner Transfer Matrices, een
techniek die we voor het Hard Squares Model slechts als benaderingsmethode kunnen (en
zullen) gebruiken. Aangezien het Hard Hexagon Model veel overeenkomsten vertoond met
het Hard Squares Model lijkt het aannemelijk dat het Hard Squares Model ook exact oplos-
baar is, maar op een dergelijke oplossing is momenteel geen uitzicht. Iets eenvoudiger dan
het vinden van ZM,N (z) voor alle M en N is het vinden van de asymptotische groeifactor
van ZM,N (z). Om deze vraag te preciseren wordt het volgende gedefinieerd.

Definitie 1.5
Voor alle z ∈ R≥0 is de partitiefunctie per positie gegeven door de dubbele limiet

κ(z) = lim
M,N→∞

[ZM,N (z)]
1

MN .

Met dubbele limiet wordt hier bedoeld dat voor alle ε > 0 er een T bestaat zodanig dat
voor alle M,N > T geldt dat

∣∣∣[ZM,N (z)]
1

MN − κ(z)
∣∣∣ < ε. In Stelling 2.18 zal bewezen

worden dat deze dubbele limiet daadwerkelijk bestaat voor alle positieve reële z, de fysisch
relevante waarden van z. Merk op dat ZM,N (z) groeit als k(z)MN . De waarde van κ(1)
wordt in de literatuur aangeduid als de Hard Square Entropy constant.

Mogelijke fysische interpretaties van het Hard Squares Model
Het Hard Squares Model kan worden gëınterpreteerd als een roostergasmodel. In deze
zienswijze wordt een correcte M bij N matrix beschouwd als een vlak rooster van moleculen.
Ieder element van de matrix komt dan overeen met een molecuul van het rooster. Bovendien
is er een gas aanwezig, waarvan de ionen of moleculen zich aan het oppervlak kunnen
hechten. Een bezette plek op het rooster komt overeen met een 1 in de matrix, terwijl een
lege plek door een 0 wordt gerepresenteerd. Het ‘harde’ van het model, dat 1-en niet direct
naast elkaar mogen staan, kan gezien worden als een vereenvoudiging van de interactie
tussen de gasdeeltjes: op korte afstand stoten deze elkaar zodanig af dat zij onmogelijk op
roosterafstand 1 van elkaar kunnen zijn, maar op roosterafstand 2 is dit afstotende effect al
volledig verwaarloosbaar. Het rooster wordt ook wel eens beschouwd als een magneet [12],
waarbij dan een 1 overeenkomt met ’spin omhoog’ en een 0 met ’spin omlaag’.

Andere namen van het Hard Squares Model
In verschillende vakgebieden heeft het Hard Squares Model andere namen. Hierdoor is
de literatuur (en de terminologie) op dit gebied nogal disjunct, hetgeen de zoektocht naar
bronnen een stochastische component heeft gegeven. De tot nu toe gebruikte naam wordt
vooral gebezigd in de statistische fysica. In de electrochemie spreekt men van een c(2x2)
roosterstructuur als een correct rooster maximaal gevuld is, omdat de minimaal mogelijke
afstand tussen twee bezette toestanden zowel in horizontale als in verticale richting gelijk
is aan 2. In de wiskunde is vooral het geval z = 1 bestudeerd, omdat de partitiefunctie dan
gelijk is aan het aantal onafhankelijke verzamelingen in een roostergraaf. Men spreekt ook
wel van het fibonaccigetal van een M bij N matrix, omdat de partitiefunctie van een 1 bij
N matrix precies de fibonaccigetallen geeft. Ten slotte: de informatica maakt gebruik van
de term two-dimensional (2-D) (1, ∞)-RLL constraint. Dit komt neer op het Hard Squares
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Model voor z = 1 en wordt door informatici gebruikt als een relatief eenvoudig model voor
dataopslag op een tweedimensionaal medium.

Wat naar mijn weten bekend is van het Hard Squares Model
In [2] wordt aangegeven dat κ(z) twee singulariteiten heeft, een niet fysische bij z− =
−0.11933888188(1) en een fysische bij z+ = 3.796255174(3). Ook wordt aangegeven dat
bij de fysische singulariteit een tweede orde faseovergang plaatsvindt van de ongeordende
’vloeibare’ fase naar een geordende ’vaste’ fase, alsmede dat de kritieke exponent v -die het
gedrag van de correlatielengte in de vloeibare fase in de buurt van de singulariteit beschrijft-
gelijk is aan 0.416667(1). Met behulp van de Corner Transfer Matrix methode zijn onlangs
92 termen van de lage dichtheidsexpansie van κ(z) rond z = 0 bepaald [3], een expansie
die echter een kleine convergentiestraal heeft door de singulariteit in z = z−. In [4] heeft
Baxter met Corner Transfer Matrices de eerste 43 decimalen van κ(1) benaderd. De beste
exact bewezen boven- en ondergrens voor κ(1) die ik in de literatuur kon vinden zijn van
Calkin en Wilf [5]: 1.503047782... ≤ κ(1) ≤ 1.5035148....

De activiteit z in termen van temperatuur en chemische potentiaal
De variabele z in de partitiefunctie heet de activiteit en is gegeven door z = eµ·β. Hierin is
µ de chemische potentiaal en β = 1/kbT , met T de absolute temperatuur en kb de constante
van Boltzmann. Bijgevolg is R>0 het fysisch zinvolle regime van z. De Boltzmanndistributie
geeft dat de fysische kans op een willekeurig rooster met m 1-en gelijk is aan het gewicht
van dat rooster gedeeld door de partitiefunctie, oftewel: zm

ZM,N (z) . Als z toeneemt hebben
deeltjes meer de neiging om zich te hechten aan het oppervlak, want de kans op roosters
met veel 1-en neemt toe. Als µ > 0 dan is z > 1, dus heeft het systeem voorkeur voor 1-en,
als µ < 0 dan heeft het systeem juist voorkeur voor 0-en. Stel nu dat we een situatie hebben
waarin µ > 0, dan volgt dat hoe hoger de temperatuur, hoe kleiner z (met een minimum
bij z = 1), hoe minder deeltjes zich aan het rooster zullen hechten, hoe ’vloeibaarder’ de
toestand. Als µ < 0 dan volgt juist dat hoe hoger de temperatuur, hoe groter z (met een
maximum bij z = 1), hoe meer deeltjes zich aan het rooster hechten. Voor µ = 0 of voor
vaste µ en een willekeurig groot wordende temperatuur komt het systeem in de situatie
z = 1 terecht. Voor z = 1 is de kans op iedere configuratie even groot zodat het systeem
noch voorkeur voor 0-en, noch voorkeur voor 1-en heeft.

Experimentele toepassing als roosteradsorptiemodel
In twee artikelen uit 2001 en 2000 bekijken Marc Koper en Johan Lukkien de adsorbtie
van een ion of molecuul op een (111) en (100) oppervlak [6, 7]. Hierbij duidt (111) aan dat
een kristal zodanig is doorgesneden dat het ontstane oppervlak een regelmatig driehoekig
rooster is , terwijl er bij (100) een vierkant rooster is ontstaan. Met behulp van Monte Carlo
simulaties onderzoeken Koper en Lukkien een aantal interactiemodellen op deze roosters.
Deze modellen verschillen van elkaar in de hoeveelheid naaste buren die wordt uitgesloten.
In het bijzonder bekijken zij het Hard Squares Model (alleen de meest naaste buren uitges-
loten op het (100) oppervlak) en het Hard Hexagon Model (alleen de meest naaste buren
uitgesloten op het (111) oppervlak). Van het laatste model is de exacte oplossing van Baxter
bekend en die wordt dan ook gebruikt om de simulaties te checken.

Koper en Lukkien bekijken de modellen in de context van elektrochemie, in het bijzonder
cyclische voltammetrie van enkelkristal electrodes. Voltammetrie is een verzamelnaam voor
een aantal elektroanalytische methoden, waarbij informatie wordt verkregen door de stroom
te meten bij variërende spanning. In geval van cyclische voltammetrie neemt de spanning
toe met de tijd, tot het maximum bereikt is, waarna de spanning weer afneemt tot de
beginspanning, etcetera.
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Koper en Lukkien gebruiken het volgende model voor adsorptie (waarbij zij als voorbeeld
de ontlading van een anion noemen):

A−+∗
 Aads + e−

waarbij ∗ een vrije roosterplek weergeeft. We kunnen dit model relateren aan de activiteit
z uit het Hard Squares Model middels de volgende uitdrukking voor de (electro)chemische
potentiaal µ:

µ = εads(Eref) +RT ln(C) + e0γ(E − Eref ) (1.1)

waarbij εads(Eref) de standaard adsorptie-energie ten op zichte van een referentiepotentiaal
Eref is, E is de electrodepotentiaal, C is de bulkconcentratie van A, γ is de electroad-
sorptievalentie van het adsorbaat (typisch gelijk aan -1), R is de gasconstante en T is de
temperatuur.

Een belangrijke reden waarom een voltammetrie-experiment een handige meetmethode is,
is dat in het hele spectrum van µ goed te meten valt, namelijk door de potentiaal E in
vergelijking (1.1) te variëren. In een normaal gasexperiment zou dit moeten gebeuren
door de druk -en dus de concentratie C- te veranderen, maar in vergelijking (1.1) staat de
logaritme van C, dus om hetzelfde bereik in µ te behalen zou de druk over onrealistisch
veel ordes van grootte gevarieerd moeten worden.

Bij voltammetrie-experimenten is de zogenaamde compressibiliteit, de afgeleide van de
dichtheid van de adsorptielaag ρ naar µ, van bijzonder belang. Dit is het geval omdat
de compressibiliteit evenredig is met de stroom die gemeten wordt als het systeem in even-
wicht is. We zullen de compressibiliteit die voorspeld wordt door het Hard Squares Model
met theoretische technieken benaderen (zie Figuur 8).

De grafiek van de compressibiliteit als functie van µ wordt door Koper en Lukkien een
butterfly genoemd. Het grootste deel van de rest van hun artikelen gaat over het vergelijken
van de vormen van deze vlinders in verschillende modellen.

Voorbeeld van een voltammetrie-experiment
In [8] wordt de adsorptie van bromide op een Ag(001) electrodeoppervlak onderzocht. Dit
gebeurt op twee verschillende manieren: met behulp van x-ray scattering én met behulp van
een cyclisch voltammogram. In Figuur 1.a zien we een schets van bromide dat geadsorbeerd
is aan het Ag(001) oppervlak, die aannemelijk maakt dat de voorwaarden uit het Hard
Squares Model van toepassing zijn. De auteurs gaan overigens uit van een iets algemener
model (dat isomorf zou zijn met het Ising model mét extern magnetisch veld), waarin
simultaan bezette naaste buren met een zekere kans toch worden toegestaan.

In Figuur 1.d is een cyclisch voltammogram gegeven. Zichtbaar is dat de bovenste curve
(metingen bij toenemende spanning) bijna precies de negatieve is van de onderste curve
(metingen bij afnemende spanning): de pieken zijn slechts licht (in de orde van 0.01 volt)
ten op zichte van elkaar verschoven. Een meting waarin de curves precies elkaars negatieven
zijn geeft aan dat het systeem bij ieder meetpunt in evenwicht was. Indien bij een meting
bij voltage V niet lang genoeg gewacht wordt tot het systeem in evenwicht is, zodat men
voortijdig aan een meting bij voltage V +ε > V begint, dan kan het zijn dat de toename van
de dichtheid (en dus van de compressibiliteit en de stroom) die al bij V zou plaatsvinden zich
pas voltrekt bij de meting van V + ε, zodat de metingen bij V en V + ε lager respectievelijk
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Figuur 1: Plaatjes overgenomen uit [8]. (a) Schets van het Ag(001) oppervlak (open cirkels).
Het geadsorbeerde bromide voldoet aan de voorwaarden van het Hard Squares Model en is
weergegeven in een ongeordende (links) en een geordende (rechts) fase. (b) Diffractiepa-
troon. De vierkanten komen overeen met Bragg pieken, de cirkels met zogenaamde Bragg
rods en de ruiten met de geadsorbeerde bromide laag.(c) X-ray scattering intensiteit als func-
tie van de positie in het diffractiepatroon van 1.b. De gevulde en lege cirkels geven metingen
van voor respectievelijk na de faseovergang weer. (d) Een cyclisch voltammogram van een
Ag(001) oppervlak in 0.05 M NaBr, gemeten met 10mV/sec. (e) Genormaliseerde x-ray
intensiteit op posities (1/2,1/2) en (1,1) in het diffractiespectrum, gemeten met 1mV/sec.

hoger uitvallen dan de correcte evenwichtswaarde. In het bijzonder is dit van belang als bij
voltage V eerst een aantal 1-en van onhandige plekken moet worden verwijderd alvorens
het rooster op efficiëntere wijze met 1-en gevuld kan worden, hetgeen typisch het geval is
in de buurt van de faseovergang bij de piek in het voltammogram. Dit verklaart waarom
de piek in de bovenste curve iets naar rechts verschoven is ten opzichte van de piek in de
onderste curve.

Naast het voltammogram wordt ook een x-ray diffractie-experiment uitgevoerd. In Figuur
1.b is (de fouriertransformatie van) het diffractiepatroon weergegeven. Hierin komen de
ruitvormige symbolen overeen met de geadsorbeerde laag bromide en de overige symbolen
met de zilveren onderlaag. De intensiteit in Figuur 1.c is weergegeven als functie van X,
waarbij X loopt over de diagonale lijn (X,X) in het diffractiepatroon. De piek rond 0.500
komt overeen met het ruitje op positie (1/2, 1/2) en dus met geadsorbeerd bromide. De
curve met de laagste piek geeft een meting bij lage activiteit weer (in de wanordelijke fase),
terwijl de curve met de hoogste piek een meting bij hoge activiteit is (in de geordende
fase). Hoe smaller de piek, hoe groter de correlatielengte, hoe meer geordend het systeem
is. In Figuur 1.e zijn de genormaliseerde intensiteiten bij de posities (1, 0) en (1/2, 1/2)
weergegeven. Duidelijk is te zien dat de intensiteit bij (1/2, 1/2) eerst 0 is, maar vanaf
de piek in het voltammogram ineens sterk toeneemt. Dit bevestigt de notie dat er een
faseovergang naar een geordend systeem plaatsvindt bij de piek in het voltammogram.
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Route van deze scriptie
In deze scriptie besteden we grofweg aandacht aan drie verschillende technieken om κ(z) te
benaderen. In Hoofdstuk 2 leiden we exacte ondergrenzen en bovengrenzen voor κ(z) af met
behulp van Row Transfer Matrices. Hierin worden de bovengrens en ondergrens die Calkin
en Wilf in [5] voor het geval z = 1 hebben afgeleid gegeneraliseerd naar alle z ∈ R≥0. In
Hoofdstuk 3 beschrijven we de Corner Transfer Matrix methode van Baxter, bijbehorende
vergelijkingen en een manier om een oplossing van die vergelijkingen te benaderen. Voor
kleine waarden van z geeft deze techniek zeer precieze en vertrouwenwekkende benaderin-
gen van onder meer κ(z), doch er bestaat geen bewijs dat de methode convergeert. In
Hoofdstuk 4 worden allerlei kleine interessante eigenschappen van de Row Transfer Matri-
ces onderzocht; eigenschappen die vooralsnog geen praktische toepassing hebben, zoals de
determinant, de inverse, het aantal positieve eigenwaarden en de recursieve structuur. Een
groot deel van dit hoofdstuk is gebaseerd op het artikel [9], dat echter geen enkel bewijs
bevat. Ook hier zijn de beweringen gegeneraliseerd van z = 1 naar alle z ∈ R≥0. In Hoofd-
stuk 5 vindt een kleine excursie naar een mogelijke toekomstige benadering van het Hard
Squares Model en vergelijkbare vierkantroostermodellen plaats. Het model wordt vertaald
naar een ééndimensionaal probleem en er wordt een zeer eenvoudig ogende alternatieve
transfermatrix voorgesteld. In Hoofdstuk 6 komt de derde benaderingsmethode van κ(z)
aan bod: een Monte Carlo simulatie. Hier geven we ook de Hamiltoniaan van het Hard
Squares Model. Hoofdstuk 7 bevat de resultaten: een tabel, grafieken en Monte Carlo
snapshots, waarna een discussie en conclusies volgen.
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2 Row Transfer Matrices

In dit hoofdstuk worden voor alle z ∈ R>0 boven- en ondergrenzen voor κ(z) afgeleid.
Daartoe wordt gebruik gemaakt van zogenaamde Row Transfer Matrices (RTM’s). Laten
we eerst een simpel geval bekijken waarin RTM’s nog niet expliciet nodig zijn, namelijk
1×N roosters.

Voorbeeld 2.1
Laat N ∈ N en z ∈ R>0. We willen Z1,N (z) bepalen. Merk daartoe het volgende op. De
som van de gewichten van de 1×N roosters die met een 0 beginnen is gelijk aan Z1,N−1(z),
terwijl de som van de gewichten van de 1 × N roosters die met een 1 beginnen gelijk is
aan z · Z1,N−2(z). Er volgt dat de partitiefunctie voor alle 1×N roosters gegeven is door
Z1,N (z) = Z1,N−1(z) + z · Z1,N−2(z).

Dit is een lineaire homogene recursierelatie. De oplossing is van de vorm Z1,N (z) =
a · λN+ + b · λN− , waarbij λ± = 1±

√
1+4z
2 de eigenwaarden van de matrix ( 1 z

1 0 ) zijn. De
beginvoorwaarden Z1,1(z) = 1+z en Z1,2(z) = 1+2z invullen en oplossen geeft de gesloten

vorm Z1,N (z) = 1√
1+4z

(
λN+2

+ − λN+2
−

)
. Voor z = 1 vinden we precies de fibonaccigetallen:

het aantal correcte 1×N roosters is Z1,N (1) = Fib(N + 2). De asymptotische groeifactor

limN→∞ [Z1,N (z)]
1
N = λ+ = 1+

√
1+4z
2 is een eenvoudige benadering van κ(z) en is voor

z = 1 gelijk aan de gulden snede!

Definitie 2.2
Een correcte vector vi ∈ RM is een correcte M × 1 matrix.

Vanwege Voorbeeld 2.1 zijn er Fib(M + 2) correcte vectoren in RM . We ordenen de vi lexi-
cografisch, door ze als binair getal te schrijven. Bijvoorbeeld voorM = 3: v1 = (0, 0, 0), v2 =
(1, 0, 0), v3 = (0, 1, 0), v4 = (0, 0, 1) en v5 = (1, 0, 1).

Definitie 2.3
Laat M ∈ N, z ∈ R≥0. De M -de Row Transfer Matrix TM (z) is de Fib(M+2) bij Fib(M+2)
matrix waarvan de rijen en kolommen gëındexeerd zijn door alle correcte vectoren vi ∈ RM ,
gedefinieerd door:

TM (z)(i, j) =
{
z||vj ||2 als 〈vi, vj〉 = 0
0 anders.

Informeel gezegd: TM (z)(i, j) is 0 als de vectoren vi en vj niet naast elkaar mogen staan en
anders gelijk aan het gewicht van vector vj , namelijk z tot de macht het aantal 1-en van
vj .

Vanaf nu wordt met ek de k-de eenheidsvector, met een 1 op coördinaat k en voor de rest
nullen, aangeduid. De eerste eenheidsvector e1 zal worden afgekort tot e.

Lemma 2.4
Voor alle z ∈ R≥0 en voor alle M,N ∈ N≥1 geldt:

ZM,N (z) =
〈
e, TN+1

M (z)e
〉
.
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Bewijs. Met inductie bewijzen we algemener dat voor alle z en alle M ∈ N≥1, N, k, l ∈ N≥0

geldt dat

∑
m≥0

h(m,M,N + 2, k, l)zm =
〈
ek, TN+1

M (z)el
〉
, (2.1)

waarbij h(m,M,N + 2, k, l) is gedefinieerd als het aantal correcte M bij N + 2 matrices
A, waarvan kolom 1 en kolom (N + 2) gelijk zijn aan vk respectievelijk vl en zodanig dat
de tweede tot en met (N + 2)-de kolom van A samen precies m 1-en bevatten. Het geval
N = 0 volgt direct uit de definitie van TM (z). Neem daarom aan dat er een N bestaat
zodanig dat vergelijking (2.1) geldt voor alle n < N . Uitschrijven van het matrixproduct
en het gebruiken van de inductieveronderstelling geven dat:

〈
ek, TN+1

M (z)el
〉

= TN+1
M (z)(k, l)

=
∑
i

TNM (z)(k, i) · TM (z)(i, l)

=
∑
i

∑
m1≥0

h(m1,M,N + 1, k, i)zm1

 ·
∑
m2≥0

h(m2,M, 2, i, l)zm2

 .

Onderstaande figuur maakt inzichtelijk dat dit gelijk is aan
∑

m=m1+m2≥0 h(m,M,N +
2, k, l)zm en daarmee is het inductiebewijs van vergelijking (2.1) rond.

In het bijzonder is h(m,M,N + 2, 0, 0) = g(m,M,N), want de nulkolommen v1 veranderen
noch iets aan het aantal 1-en, noch iets aan de correctheid van de matrices die zij insluiten.
Het lemma volgt daarom uit Definitie 1.3 en vergelijking (2.1).

Omdat TM (z) niet hermiets is en we die eigenschap wel nodig hebben in enkele bewijzen,
definiëren we hulpmatrices DM (z) en SM (z).

Definitie 2.5
DM (z) is de Fib(M+2) bij Fib(M+2) diagonaalmatrix waarvan het i-de diagonaalelement
gelijk is aan

z
1
2
·||vi||2 .

Definitie 2.6

SM (z) := DM (z)TM (1)DM (z)
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Opmerking 2.7

TM (z) = TM (1)D2
M (z)

Opmerking 2.8
Voor alle M en z is SM (z) hermiets, want voor alle i, j geldt:

SM (z)(i, j) =
∑
k

∑
l

DM (i, k)TM (k, l)DM (l, j) = DM (i, i)TM (i, j)DM (j, j) = TM (1)(i, j)·z
||vi||

2+||vj ||
2

2

hetgeen symmetrisch is in i en j.

Voorbeeld 2.9
Beschouw het geval M = 3. Er zijn 5 toegestane vectoren, namelijk (000), (100), (010), (001)
en (101), met gewichten 1, z, z, z en z2. De bijbehorende overgangsmatrices zijn

T3(z) =


1 z z z z2

1 0 z z 0
1 z 0 z z2

1 z z 0 0
1 0 z 0 0

 =


1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0

 ·


1 0 0 0 0
0 z1/2 0 0 0
0 0 z1/2 0 0
0 0 0 z1/2 0
0 0 0 0 z


2

=

T3(1) ·D2
3(z)

S3(z) =


1 z1/2 z1/2 z1/2 z

z1/2 0 z z 0
z1/2 z 0 z z3/2

z1/2 z z 0 0
z 0 z3/2 0 0

 .

Opmerking 2.10
Voor alle z ∈ R>0 en voor alle N ∈ N:

SNM (z) = DM (z)TNM (z)D−1
M (z).

Opmerking 2.11
Uit de vorige opmerking volgt voor N = 1 dat TM (z) en SM (z) gelijksoortig zijn, zodat zij
de zelfde eigenwaarden hebben.

Lemma 2.12
Voor alle z ∈ R>0 en voor alle M,N ∈ N:〈

e, SNM (z)e
〉

=
〈
e, TNM (z)e

〉
.

Bewijs. Voor alle M en z is het element in de linker bovenhoek van de diagonaalmatrices
DM (z) en D−1

M (z) gelijk aan 1, i.e.: DM (z)(1, 1) = D−1
M (z)(1, 1) = 1. Er volgt dat

〈
e, SNM (z)e

〉
=

〈
e, DM (z)TNM (z)D−1

M (z)e
〉

=
[
DM (z)TNM (z)D−1

M (z)
]

(1, 1)

=
[
TNM (z)

]
(1, 1)

=
〈
e, TNM (z)e

〉
.
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Stelling 2.13
Perron-Frobenius [10, p. 124].
Laat A een vierkante niet-negatieve irreducibele matrix zijn. Dan geldt:

(i) A heeft een reële positieve eigenwaarde λ1 (de Perronwortel) zodanig dat voor alle
eigenwaarden λi van A geldt dat |λi| ≤ λ1.
(ii) A heeft een positieve eigenvector u1 die correspondeert met λ1

(iii) Laat h het aantal eigenwaarden λi van A waarvoor |λi| = λ1. Als h > 1 dan bestaat
er een permutatiematrix P zodanig dat

PAP t =


0 A1,2

0 A2,3

. . .
. . .

0 Ah−1,h

Ah,1 0


waarbij de nulblokken op de hoofddiagonaal vierkant zijn.

Definitie 2.14
ΛM (z) is de positieve eigenwaarde van TM (z) die in absolute waarde strikt groter is dan de
overige eigenwaarden van TM (z).

Dat deze definitie zinvol is volgt uit het bewijs van het volgende lemma, waarin onder meer
wordt aangetoond dat de met TM (z) gelijksoortige matrix SM (z) een positieve eigenwaarde
heeft die in absolute waarde strikt groter is dan de overige eigenwaarden van SM (z).

Lemma 2.15
Voor alle z ∈ R>0 en voor alle M ∈ N:

lim
N→∞

〈
e, TNM (z)e

〉1/N
= ΛM (z).

Bewijs. Neem z en M vast. De matrix SM (z) is vierkant, reëel en bevat slechts niet-
negatieve elementen. Ook geldt dat SM (z) irreducibel is, want de geassocieerde gerichte
graaf (waarin een tak van knoop i naar knoop j loopt precies als SM (z)(i, j) > 0 ) is
sterk samenhangend. Immers: alle correcte vectoren staan loodrecht op de nulvector v1,
waardoor voor alle i, j : SM (z)(i, 1) > 0 en SM (z)(1, j) > 0, zodat vanaf iedere knoop i er
een pad loopt naar iedere andere willekeurige knoop j.

Uit Perron-Frobenius volgt nu dat SM (z) een reële positieve eigenwaarde λ1 heeft, zodanig
dat voor alle eigenwaarden λi van S(z) geldt dat |λi| ≤ λ1.

Stel SM (z) heeft h eigenwaarden λ1, · · · , λh van modulus λ1. Neem aan dat h > 1, dan volgt
met Perron-Frobenius dat er een permutatiematrix P bestaat zodanig dat PSM (z)P t alleen
nullen op de diagonaal heeft. Maar per definitie van de permutatiematrix bestaat er een per-
mutatie σ van n elementen waarbij voor alle i, j :

[
PSM (z)P t

]
(i, j) = [SM (z)] (σ(i), σ(j)).

In het bijzonder geldt voor de i waarvoor σ(i) = 1 dat
[
PSM (z)P t

]
(i, i) = [SM (z)] (σ(i), σ(i)) =

1, dus PSM (z)P t heeft een niet-nul diagonaalelement. Tegenspraak. Dus h = 1.

We weten dus nu dat SM (z) een positieve eigenwaarde heeft die absoluut strikt groter is
dan de overige eigenwaarden.

12



De matrix SM (z) is hermiets, dus er is een basis van orthonormale eigenvectoren {ui} met
bijbehorende (reële) eigenwaarden λi van SM (z). We kunnen e bovendien schrijven als
e :=

∑Fib(M+2)
i=1 ai · ui, waarbij voor alle i: ai = 〈e, ui〉. Hieruit volgt dat:

lim
N→∞

〈
e, SNM (z)e

〉1/N
= lim

N→∞

〈
Fib(M+2)∑

i=1

ai · ui,
Fib(M+2)∑

i=1

ai · λNi · ui

〉1/N

= lim
N→∞

Fib(M+2)∑
i=1

a2
i · λNi

1/N

= λ1 · lim
N→∞

Fib(M+2)∑
i=1

a2
i ·
(
λi
λ1

)N1/N

= ΛM (z).

Waarbij ΛM (z) = λ1 > 0 de absoluut grootste eigenwaarde van SM (z) is. De laatste
gelijkheid geldt vanwege het volgende. Laat u1 de eigenvector die hoort bij λ1. Volgens
Perron-Frobenius is u1 positief, dat wil zeggen: ieder element van u1 is groter dan 0. Dus
a1 = 〈e, u1〉 6= 0.

Ten slotte vertalen we het probleem van SM (z) terug naar een probleem in termen van
TM (z) met behulp van Lemma 2.12.

ΛM (z) = lim
N→∞

〈
e, SNM (z)e

〉1/N
= lim

N→∞

〈
e, TNM (z)e

〉1/N
.

Opmerking 2.16
Uit Lemma 2.4 en Lemma 2.15 volgt direct dat ΛM (z)1/M gelijk is aan limN→∞Z1/MN

M,N (z),
de partitiefunctie per positie van M ×N roosters voor M eindig en N →∞.

Nu we weten dat de enkele limiet voor N → ∞ bestaat en gelijk is aan de grootste eigen-
waarde van de transfermatrix, kunnen we ons richten op de dubbele limiet k(z). Om het
bestaan van die limiet (Stelling 2.18) en exacte ondergrenzen (Stelling 2.19) ervan te bewi-
jzen zullen we gebruik maken van het maximumprincipe, dat een speciaal geval is van het
Courant min-maxprincipe.

Lemma 2.17
Maximumprincipe [11, p. 179].
Laat A een reële symmetrische matrix en laat Λ de grootste eigenwaarde van A, dan:

Λ = max
||x||6=0

〈x,Ax〉
〈x, x〉

.

Stelling 2.18
Voor alle z ∈ R≥0 bestaan de gëıtereerde limiet limM→∞ limN→∞Z1/MN

M,N (z) en de dubbele

limiet κ(z) := limM,N→∞Z1/MN
M,N (z) en zij zijn beide gelijk aan

lim
M→∞

Λ1/M
M (z).
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Bewijs. Voor z = 0 is

k(0) = lim
M,N→∞

[ZM,N (0)]
1

MN = lim
M,N→∞

[g(0,M,N)]
1

MN = lim
M,N→∞

[1]
1

MN = 1

Voor z > 0 passen we het maximumprincipe toe op machten van de reële symmetrische
transfermatrix SM (z).

Er volgt met Lemma 2.12 dat ∀p ∈ N>0 :

ΛpM (z) ≥
〈
e, SpM (z)e

〉
〈e, e〉

=
〈
e, T pM (z)e

〉
.

Maar
〈
e, T pM (z)e

〉
=
〈
e, TM+1

p−1 (z)e
〉

omdat beide zijdes gelijk zijn aan de partitiefunctie
voor M bij p−1 roosters (Lemma 2.4)! Dus, na het nemen van M -de machts wortels volgt:

(Λ1/M
M (z))p ≥

〈
e, TM+1

p−1 (z)e
〉1/M

. (2.2)

Neem nu de lim inf van beide zijdes van deze vergelijking, voor M →∞, dan verkrijgen we
met behulp van Lemma 2.15 dat:

(
lim inf
M→∞

Λ1/M
M (z)

)p
≥ Λp−1(z).

Neem vervolgens de (p− 1)-de machtswortel en de lim sup voor p→∞ om te vinden dat:

lim inf
M→∞

Λ1/M
M (z) ≥ lim sup

p→∞
Λ1/p
p (z).

Aangezien de omgekeerde ongelijkheid vanzelfsprekend is, volgt dat de limiet limM→∞ Λ1/M
M (z)

bestaat en dus, vanwege Lemma 2.15, bestaat ook de gëıtereerde limiet

g(z) := lim
M→∞

lim
N→∞

Z1/MN
M,N (z) = lim

M→∞
lim
N→∞

〈
e, TNM (z)e

〉1/MN
= lim

M→∞
Λ1/M
M (z).

Ten slotte bewijzen we dat ook de dubbele limiet κ(z) = limM,N→∞Z1/MN
M,N (z) bestaat.

Daaruit volgt dan dat κ(z) = g(z) = limM→∞ Λ1/M
M (z).

Voor alle a,M,N ∈ N≥1 geldt dat ieder correct M bij aN rooster kan worden opgedeeld
in a aparte correcte M bij N roosters. Omdat voor alle z ∈ R>0 de som van de gewichten
toeneemt met ieder extra toegestaan rooster, volgt dat ZM,aN (z) ≤ ZaM,N (z), zodat

Z1/aMN
M,aN (z) ≤ Z1/MN

M,N (z). (2.3)

Hieruit vinden we voor alle M en N een ondergrens van Z1/MN
M,N (z):

Λ1/M
M (z) = lim

N ′→∞
Z1/MN ′

M,N ′ (z) ≤ Z1/MN
M,N (z).
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Voor een bovengrens van Z1/MN
M,N (z) herschrijven we vergelijking (2.2) door daarin N = p−1

in te vullen en Lemma 2.4 toe te passen. Dit geeft voor alle M en N dat:

Z1/MN
M,N (z) ≤ (Λ1/M

M )1+1/N (z).

We zien dat Z1/MN
M,N (z) wordt ingesloten door twee functies waarvan de dubbele limieten

limM,N→∞ Λ1/M
M (z) en limM,N→∞(Λ1/M

M )1+1/N (z) bestaan en gelijk zijn aan g(z). Er volgt
dat limM,N→∞Z1/MN

M,N (z) bestaat en gelijk is aan g(z).

Iets preciezer: de insluiting van Z1/MN
M,N (z) impliceert dat voor alle M,N en z:

|Z1/MN
M,N (z)− g(z)| ≤ |Λ1/M

M (z)− g(z)|+ |(Λ1/M
M )1+1/N (z)− g(z)|

en samen met limM,N→∞ Λ1/M
M (z) = g(z) en limM,N→∞(Λ1/M

M )1+1/N (z) = g(z) geeft dat:

voor alle ε > 0 bestaat er een T zodanig dat voor alle M,N > T : |Λ1/M
M (z) − g(z)| < ε/2

en |(Λ1/M
M )1+1/N (z)− g(z)| < ε/2 en dus ook |Z1/MN

M,N (z)− g(z)| < ε/2 + ε/2 = ε.

Met een kleine aanpassing van het bovenstaande argument kunnen we ook exacte onder-
grenzen van k(z) afleiden. Vanaf nu laten we de variabele z meestal weg bij TM (z) en
SM (z).

Stelling 2.19
Voor alle z ∈ R≥0 en voor alle p, q ∈ N>0:

k(z) ≥
(

Λp+2q−1(z)
Λ2q−1(z)

)1/p

.

Bewijs. Voor z = 0 is het duidelijk, want ∀x : Λx(0) = 1 = k(0). Neem dus aan dat z > 0.

Laat p, q,M ∈ N>0. Pas het maximumprincipe toe op SpM , met de vector x = SqMe, dan:

ΛpM (z) ≥
〈
SqMe, SpMS

q
Me
〉〈

SqMe, SqMe
〉 =

〈
e, SqMS

p
MS

q
Me
〉〈

e, SqMS
q
Me
〉 =

〈
e, Sp+2q

M e
〉

〈
e, S2q

Me
〉 =

〈
e, SM+1

p+2q−1e
〉

〈
e, SM+1

2q−1 e
〉

waarbij de eerste gelijkheid werkt omdat SM symmetrisch reël is en de cruciale laatste
gelijkheid volgt door Lemma 2.4 op teller en noemer toe te passen. Met Stelling 2.18
komen we tot

k(z)p =
(

lim
M→∞

Λ1/M
M (z)

)p
≥ lim

M→∞


〈
e, SM+1

p+2q−1e
〉

〈
e, SM+1

2q−1 e
〉
1/M

=
Λp+2q−1(z)
Λ2q−1(z)

en het resultaat volgt na het nemen van de p-de machtswortel aan beide zijdes van de
vergelijking.
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Als alleen de eerste M spectraalradii Λ1(z), · · · ,ΛM (z) bekend zijn, levert het geval p = 1
(en q = M) typisch de scherpste ondergrens van k(z) op:

Gevolg 2.20
Voor alle z ∈ R≥0 en voor alle q ∈ N>0 geldt:

k(z) ≥ Λ2q(z)
Λ2q−1(z)

.

Naast een ondergrens willen we natuurlijk ook een bovengrens hebben. Met het oog op de
vorm van de ondergrens in Gevolg 2.20 ligt het voor de hand de volgende bovengrens te
proberen: ∀q ∈ N : k(z) ≤ Λ2q+1(z)

Λ2q(z) . Dit is echter in het algemeen niet waar. Hoewel dit
voor q = 0, 1, 2, 3, 4, 5 inderdaad een zeer scherpe en snel convergerende bovengrens lijkt op
te leveren, gaat het mis bij z = 1, q = 6, omdat de ‘bovengrens’ daar onder een ondergrens
duikt (zie Tabel 1). Het lijkt er dus op dat we onze toevlucht moeten zoeken tot een ander
soort bovengrens.

Lemma 2.21
(Zwakke bovengrens)
Voor alle z ∈ R≥0, voor alle M ∈ N geldt:

κ(z) ≤ Λ1/M
M (z).

Bewijs. Neem M vast. Vanwege het argument vlak boven vergelijking (2.3) hebben we voor
alle gehele getallen N en a ≥ 1 dat ZaM,N (z) ≤ ZaM,N (z). Met Opmerking 2.16 volgt in de
limiet voor N →∞ dat ΛaM (z) ≤ ΛaM (z). Ten slotte geeft Stelling 2.18 dat:

κ(z) = lim
a→∞

Λ1/aM
aM (z) ≤ lim

a→∞
(ΛaM (z))1/aM = Λ1/M

M (z).

We kunnen een iets scherpere bovengrens formuleren door cyclische randvoorwaarden te
gebruiken. Daartoe moeten we eerst een aantal definities invoeren.

Definitie 2.22
Een cyclisch correcte vector ṽi ∈ RM is een correcte vector waarvoor bovendien ṽi(1) ·
ṽi(M) = 0.

Definitie 2.23
Laat M ∈ N, z ∈ R≥0. De M -de cyclische Row Transfer Matrix T̃M (z) is een matrix
gëındexeerd door alle cyclisch correcte vectoren ṽi ∈ RM en gedefinieerd door:

T̃M (z)(i, j) =
{
z||ṽj ||2 als 〈ṽi, ṽj〉 = 0
0 anders.

Voor notationeel gemak zullen we vaak T̃M schrijven voor T̃M (z).

Definitie 2.24
Een correct M × N rooster (ai,j) is M -cyclisch correct als het voldoet aan de extra voor-
waarde dat voor alle j : a1,j · aM,j = 0, en N -cyclisch correct als het voldoet aan de extra
voorwaarde dat voor alle i : ai,1 · ai,N = 0.
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Definitie 2.25

Z̃M,N (z) :=
∑
m

g̃(m,M,N) · zm en ˜̃ZM,N (z) :=
∑
m

˜̃g(m,M,N) · zm

waarbij g̃(m,M,N) := aantal {N -cyclisch correcte M ×N roosters met precies m 1-en} en
˜̃g(m,M,N) := aantal {M -én N -cyclisch correcte M ×N roosters met precies m 1-en}.

Lemma 2.26
Voor alle M,N ∈ N>1 geldt:

Z̃M,N (z) = tr(TNM ) en ˜̃ZM,N (z) = tr(T̃NM ).

Bewijs. Het bewijs verloopt op de zelfde manier als in Lemma 2.4

Het volgende lemma is de belangrijkste bouwsteen voor de afleiding van de scherpe boven-
grens in Stelling 2.30.

Lemma 2.27
Voor alle z ∈ R>0 en alle geheeltallige p > 0 en M > 1 geldt:

lim
M→∞

(
tr
(
T 2p
M

))1/M
= lim

M→∞

(
tr
(
T̃M2p

))1/M
.

Bewijs. Laat p ∈ N>0.

We merken eerst op dat voor alle M groter dan 1:

Z̃M,2p

(1 + z)2p
≤
Z̃M,2p

Z̃1,2p

≤ ˜̃ZM,2p ≤ Z̃M,2p. (2.4)

Figuur 2: Toelichting van vergelijking (2.4). De symbolen ∗ en ∗∗ geven aan dat de betref-
fende kolommen respectievelijk rijen aangrenzend zijn. Het linker en rechter plaatje kunnen
als cilinder worden beschouwd, het middelste plaatje als torus.

De eerste twee ongelijkheden van (2.4) gelden omdat ˜̃ZM,2p een extra M -cyclische rand-

voorwaarde heeft ten opzichte van Z̃M,2p. Hierdoor schelen Z̃M,2p en ˜̃ZM,2p hoogstens de
gewichtsom Z̃1,2p van een 1×2p ring. Voor alle z ∈ R>0 neemt de gewichtsom toe met ieder
extra rooster dat toegestaan wordt, dus Z̃1,2p is kleiner of gelijk (1 + z)2p, de gewichtsom
voor een 1 × 2p ring als alle roosters erop toegestaan zouden zijn. De laatste ongelijkheid
van (2.4) volgt met een soortgelijk, korter argument.
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Vergelijking (2.4) kan met Lemma 2.26 worden omgeschreven tot: ∀M > 1:

1
(1 + z)2p

tr
(
T 2p
M

)
≤ tr

(
T̃M2p

)
≤ tr

(
T 2p
M

)
.

Neem nu de M -de machts wortel en de limiet voor M → ∞, dan volgt het lemma door
insluiting.

Lemma 2.28
Voor alle z ∈ R>0 en alle M,N ∈ N geldt:

tr(TNM ) =
∑
λ

λN en tr(T̃NM ) =
∑
λ̃

λ̃N

waarbij de linker respectievelijk rechter som loopt over alle eigenwaarden van TM respec-
tievelijk T̃M .

Bewijs. Laat A een hermietse matrix zijn. Vanwege de spectraalstelling kan A geschreven
worden als PEP−1 waarbij P een unitaire matrix is en E de diagonaalmatrix met de
eigenwaarden van A op de diagonaal. Er volgt dat

tr(AN ) = tr
((
PEP−1

)N) = tr
(
PENP−1

)
= tr

(
PP−1EN

)
= tr

(
EN
)

=
∑
λ

λN

waarbij de som over alle eigenwaarden λ van A loopt.

Kies nu A = SM en gebruik Opmerking 2.11 om te vinden dat tr(TNM ) =
∑

λ λ
N . Voor

T̃M kunnen we geheel analoog aan Definitie 2.5 en 2.6 een symmetrische matrix S̃M =
D̃M T̃MD̃

−1
M met dezelfde eigenwaarden als T̃M definiëren. Kies A = S̃M , dan volgt tr(T̃NM ) =∑

λ̃ λ̃
N .

Definitie 2.29
Λ̃M (z) is de positieve eigenwaarde van T̃M (z) die in absolute waarde strikt groter is dan de
overige eigenwaarden van T̃M (z).

Stelling 2.30
(Scherpe bovengrens)
Voor alle z ∈ R≥0 en alle p ∈ N>0 geldt:

Λ̃1/2p
2p (z) ≥ k(z).

Bewijs. Analoog aan het bewijs in Lemma 2.15 volgt met Perron-Frobenius dat definitie
2.29 zinvol is, dus T̃2p heeft een unieke positieve eigenwaarde Λ̃2p(z) die in absolute waarde
groter is dan alle overige eigenwaarden. Daaruit volgt dat

Λ̃2p(z) = lim
M→∞

∑
λ̃

λ̃M (z)

1/M

(2.5)

waarbij de som loopt over alle eigenwaarden van T̃2p.
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Nu komt alles bij elkaar:

Λ̃1/2p
2p (z) = lim

M→∞

∑
λ̃

λ̃M

 1
M
· 1
2p

(2.6)

= lim
M→∞

(
tr
(
T̃M2p

)) 1
M
· 1
2p

= lim
M→∞

(
tr
(
T 2p
M

)) 1
2p
· 1
M

= lim
M→∞

(∑
λ

λ2p

) 1
2p
· 1
M

(2.7)

≥ lim
M→∞

Λ1/M
M (z) (2.8)

= k(z). (2.9)

In (2.6) en (2.7) wordt gesommeerd over de eigenwaarden van T̃2p(z) respectievelijk TM (z).
Bij de gelijkheden (2.6) tot en met (2.7) zijn achtereenvolgens vergelijking (2.5), Lemma
2.28, Lemma 2.27 en opnieuw Lemma 2.28 gebruikt. Gelijkheid (2.9) was het onderwerp
van Stelling 2.18. Bij de ongelijkheid (2.8) is cruciaal gebruik gemaakt van het feit dat alle
termen λ2p in de som niet negatief zijn. Hier komt aan het licht waarom de bovengrens
van deze stelling alleen voor even machten Λ̃1/2p

2p (z) werkt, en niet voor oneven machten

Λ̃1/(2p+1)
2p+1 (z).

2.1 Toepassing RTM-afschattingen op algemenere modellen

De resultaten in dit hoofdstuk voor het Hard Squares Model zijn goed te generaliseren naar
een algemener model waarin horizontale en verticale interacties (next neighbours) wel wor-
den toegestaan, met een zekere wegingsfactor, en ook diagonale interacties (next nearest
neighbours) worden meegenomen. Definieer namelijk

g(M,N, p, q, r) := aantal M ×N binaire matrices met p 1-en, q horizontale of verticale 1-1
paren en r diagonale 1-1 paren

en de algemenere partitiefunctie

ZM,N (z, x, d) =
∑
p,q,r

g(M,N, p, q, r)zpxqdr.

Als d = 1 en x→ 0 krijgen we (op de extra sommaties over q en r na) het oorspronkelijke
Hard Squares Model terug.

Er is een overeenkomstige transfermatrix TM (z, x, d) met elementen

TM (z, x, d)(i, j) = z||v
2
j || · x〈vi,vj〉+

∑M−1
l=1 vj(l)·vj(l+1) · d

∑M−1
l=1 vi(l)·vj(l+1)+vi(l+1)·vj(l).

Informeel gezegd: de exponent van z is het aantal 1-en in de nieuwe kolomvector vj , de
exponent van x is het aantal verticaal naburige 1-1 paren in vj plus het aantal horizontaal
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naburige 1-1 paren dat ontstaat als kolomvector vj naast kolomvector vi wordt geplaatst,
en ten slotte is de exponent van d gelijk aan het aantal diagonale 1-1 paren als vi naast vj
staat. Om kort te gaan: TM (z, x, d)(i, j) is het extra gewicht dat aan het gewicht van vi
wordt toegevoegd als vj er naast komt.

Net als de oorspronkelijke transfermatrix kunnen we TM schrijven als het product van
een symmetrische matrix en een diagonaalmatrix. Definieer namelijk de diagonaalmatrix
DM (z, x) door

∀i : DM (x)(i, i) = z
1
2
·||v2i || · x

1
2
·
∑M−1

l=1 vi(l)·vi(l+1)

waarin alleen het gewicht van de 1-en en de verticale interacties zijn verwerkt.

Definieer ook de symmetrische matrix QM (x, d) gegeven door

QM (x, d)(i, j) = x〈vi,vj〉 · d
∑M−1

l=1 vi(l)·vj(l+1)+vi(l+1)·vj(l)

waarin alleen de diagonale en horizontale interacties zijn verwerkt.

Dan geldt:
TM (z, x, d) = QM (x, d) ·D2

M (z).

Ten slotte kunnen we een veralgemenisering van de symmetrische matrix SM definiëren:

SM (z, x, d) = DM (z) · TM (z, x, d) ·D−1
M (z).

In deze notatie, voor z, x, d ∈ R>0, kunnen alle bewijzen vanaf Lemma 2.12 op (vrijwel)
precies de zelfde manier worden toegepast. In het bijzonder kan

k(z, x, d) := lim
M,N→∞

[ZM,N (z, x, d)]
1

MN

met de eigenwaardenongelijkheden uit Stelling 2.19 en Stelling 2.30 worden afgeschat.

Merk op dat het moeilijker zal worden om dit resultaat te veralgemeniseren naar interac-
ties tussen nog verder uiteengelegen elementen, want een kolomtransfermatrix laat slechts
een eenvoudige beschrijving van een interactie toe tussen elementen in direct naast elkaar
gelegen kolommen. Ook kunnen we deze methode niet toepassen op een model waarin de
horizontale en verticale interactie verschillend zijn, want dan verliezen we de symmetrie (de
partitiefunctie voor M ×N roosters is de partitiefunctie voor N ×M roosters) waarvan we
bij de afleiding van de sterke ondergrens (Lemma 2.18) zo handig gebruik konden maken.
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3 Corner Transfer Matrices

Corner Transfer Matrices (CTM) zijn vergelijkbaar met Row Transfer Matrices. Waar de
laatste als het ware het gewicht van een rij toevoegt, voegt een CTM het gewicht van een
heel kwart vlak toe.

CTM’s zijn onlosmakelijk verbonden met Rodney Baxter. Met behulp van CTM’s heeft
hij in de jaren 80 het vergelijkbare Hard Hexagon Model exact opgelost. Daarna zijn ze
ook gebruikt in variational methods om de entropieconstante van allerlei modellen, zoals
de Hard Square Entropy constante k(z), te benaderen. Hoewel deze methoden opmerkelijk
snel lijken te convergeren, is een exact bewijs hiervan mij onvindbaar gebleken. Yao-Ban
Chan, de schrijver van een proefschrift over onder andere het Hard Squares Model, heeft
per mail bevestigd dat er geen bewijs bestaat. De waarde die Baxter voor κ(1) vond in
[4], op maar lieft 43 decimalen nauwkeurig, ligt wel overtuigend tussen de exacte boven- en
ondergrenzen van Calkin en Wilf die in het vorige hoofdstuk besproken zijn.

In dit hoofdstuk zullen we het volgende doen. We definiëren de CTM en enkele hulp-
matrices. De geldigheid van de twee zogenaamde CTM vergelijkingen wordt aannemelijk
gemaakt, maar niet volledig bewezen. De CTM vergelijkingen beschrijven een relatie die zou
moeten gelden voor de CTM matrices in geval van een (in twee richtingen) oneindig groot
rooster. Met behulp van de matrices die de oplossing van deze vergelijking vormen, kunnen
vervolgens fysisch interessante parameters zoals k(z), de dichtheid ρ(z) en de kans ρ2(z)
dat diagonaal naburige 1-1 paren tegelijk bezet zijn bepaald worden. Ten slotte bespreken
we een manier om de oplossing van de CTM vergelijkingen te benaderen. Er zijn in ieder
geval twee methodes bekend om dit te doen. De eerste methode, die hier niet aan bod zal
komen, is van Baxter en komt neer op itereren door de CTM vergelijkingen, in combinatie
met een power method. De tweede methode, de Corner Transfer Matrix Renormalisation
Group (CTMRG) methode, wordt wel in dit hoofdstuk besproken en is overgenomen uit
het proefschrift van Chan [12]. De CTMRG methode komt grofweg neer op het volgende.
Gegeven de CTM behorende bij N ×N roosters wordt de CTM van N + 1×N + 1 roosters
bepaald. Deze nieuwe CTM wordt gediagonaliseerd en de kleinste eigenwaarden worden
weggegooid (i.e.: alleen de belangrijke large scale informatie wordt behouden). Hierna
wordt de CTM weer weer ingeperkt tot het formaat van de oorspronkelijke CTM die bij de
N ×N roosters hoorde. Dit proces geeft een benadering waarbij als het ware de large scale
informatie van een heel grote CTM in het formaat van een kleinere CTM wordt gestopt, wat
de berekenbaarheid sterk ten goede komt. De methode van Chan heb ik gëımplementeerd
in Matlab en daarmee verkrijg ik precies de waarden van Baxter. In deze scriptie wordt
slechts geconcentreerd op het bepalen van numerieke waarden voor gegeven z. Het is ook
mogelijk om met de CTMRG een machtreeks voor k(z) te bepalen. Baxter en Chan vonden
met hun methodes de lage dichtheidsexpansie rond z = 0:

κ(z) = 1 + z − 2x2 + 8z3 − 40z4 + 225z5 − 1362z6 + . . .

die echter een nogal kleine convergentiestraal heeft door de singulariteit van k(z) in z =
−0.12 . . .. Onlangs heeft Chan [3] 92 termen van deze expansie bepaald.

In dit hoofdstuk zullen we, voor notationeel gemak en om consistent te blijven met de
gebruikte literatuur, het gewicht van een rooster iets anders benaderen. In plaats van het
gewicht van een rooster σ per element σ(i, j) te tellen, zullen we hier het gewicht tellen

door van ieder deelrooster van 4 elementen
(

σ(i, j) σ(i, j + 1)
σ(i+ 1, j) σ(i+ 1, j + 1)

)
het gemiddelde
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gewicht te bepalen en te sommeren over al deze deelroosters. Vanaf nu noemen we een
dergelijk deelrooster een vlak.

Definitie 3.1

Laat a, b, c, d ∈ {0, 1}. Het gemiddelde gewicht van het vlak

(
a b
c d

)
is:

ω

(
a b
c d

)
:=

{
0 als ab+ bd+ dc+ ca 6= 0
z

a+b+c+d
4 anders.

Merk op dat het gemiddelde gewicht van een vlak het gewicht z van ieder aangrenzend
element met een factor 1/4 telt. Als een rooster alle 4 vlakken rond dat element bevat dan
zal het gewicht van het element dus volledig geteld zijn. Bijgevolg verschillen het gewicht in
de zin van Definitie 1.3 en deze methode 1 slechts van elkaar op de randen van het rooster.
Dit verschil wordt verwaarloosbaar in geval van een M × N rooster, het nemen van de
MN -de machtswortel en de limiet M,N →∞. Deze benadering geeft dus precies dezelfde
waarden voor k(z). Daarom wordt in dit hoofdstuk vanaf nu met ‘gewicht’ de gewichtssom
zoals beschreven in de voetnoot bedoeld.

Definitie 3.2
Laat N een positief geheel getal en laat a ∈ {0, 1}. Een Corner Transfer Matrix (CTM)
AN (a) is een Fib(N + 1 − a) × Fib(N + 1 − a) matrix - gëındexeerd door alle correcte
vectoren vi ∈ RN die voldoen aan vi(1) = a - waarvan de elementen gegeven zijn door:

AN (a)(i, j) =
∑
σ

N−1∏
p=1

N−1∏
q=1

ω

(
σ(p, q) σ(p, q + 1)

σ(p+ 1, q) σ(p+ 1, q + 1)

)
.

De sommatie loopt over alle correcte N bij N roosters σ waarvan de eerste rij en eerste
kolom zijn gegeven door σ(1, ∗) = vi respectievelijk σ(∗, 1) = vj .

In andere woorden: AN (a)(i, j) is gelijk aan de som van de gewichten van alle N bij N
roosters σ waarvan de bovenste rij en de meest linker kolom gelijk zijn aan de vectoren vi
respectievelijk vj . De spin in de linker bovenhoek σ(1, 1) is gelijk aan a.

Definitie 3.3
Laat N een positief geheel getal zijn en laat a, b ∈ {0, 1}. Een matrix FN (a, b) is een
Fib(N + 1− a)× Fib(N + 1− b) matrix - gëındexeerd door alle correcte vectoren vi en wj
in RN die voldoen aan vi(1) = a respectievelijk wj(1) = b - waarvan de elementen gegeven
zijn door:

FN (a, b)(i, j) =
N−1∏
p=1

ω

(
σ(1, p) σ(2, p+ 1)

σ(1, p+ 1) σ(2, p+ 1)

)
.

Hierbij is σ het N × 2 rooster met kolommen σ(∗, 1) = vi en σ(∗, 2) = wj .

In andere woorden: FN (a, b)(i, j) is gelijk aan het gewicht van het N bij 2 rooster σ waarvan
de linker en rechter kolom gelijk zijn aan de vectoren vi respectievelijk wj . De bovenste
twee spins zijn σ(1, 1) = a en σ(1, 2) = b.

1sommeren over de gemiddelde gewichten van alle vlakken van het rooster
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Opmerking 3.4
tr(AN (a)4) is gelijk aan de gewichtsom over alle 2N − 1 bij 2N − 1 roosters waarvan het
middelste element gelijk is aan a.

Het volgende lemma maakt CTM’s handig en belangrijk.

Lemma 3.5
In de limiet voor N →∞ gelden voor zekere η, ξ ∈ R de volgende CTM vergelijkingen

∑
b∈{0,1}

F (a, b)A2(b)F (b, a) = ξA2(a) (3.1)

∑
c,d∈{0,1}

ω

(
a b
c d

)
F (a, c)A(c)F (c, d)A(d)F (d, b) = ηA(a)F (a, b)A(b) (3.2)

κ = η/ξ. (3.3)

’Bewijs 1’. Een intüıtieve verklaring van Lemma 3.5 wordt gegeven door onderstaande
plaatjes.

,,,,,,

Zoals in de linker figuur te zien is komt de term
∑

b F (a, b)A2(b)F (b, a) overeen met de
gewichtsom van (N + 1) bij (2N − 1) roosters, terwijl de term A2(a) overeen komt met
de gewichtsom van N bij (2N − 1) roosters. De als eerste beschreven roosters bevatten
2N − 1 posities meer. Aangezien κ de partitiefunctie per positie is, is het aannemelijk dat,
voor N heel groot, de gewichtsom van het eerste rooster een factor ξ ≈ κ2N−1 groter is
dan die van het tweede rooster. Op een zelfde manier volgt uit de tweede vergelijking dat
η ≈ κ(N+1)(2N)−N(2N) = κ2N , zodat κ ≈ η/ξ.

In [12] geeft Chan een bewijs van de geldigheid van de CTM vergelijkingen, waarvan ik de
grote lijnen hieronder zal uitleggen.

’Bewijs 2’. Beschouw eerst een normale rijovergangsmatrix TM en het maximumprincipe

ΛM = max
ψ 6=0

ψtTMψ

ψtψ
(3.4)

waarbij ψ een vector uit R2M
aanduidt. Het doel is om de optimale ψ te vinden omdat k(z)

dan uit λM gevonden kan worden. Daartoe wordt eerst gemaximaliseerd over een beperkt
deel van de vectoren uit R2M

, namelijk vectoren waarvan de elementen voldoen aan:

ψ(σ1, . . . , σM ) := tr(FN (σ1, σ2)FN (σ2, σ3) . . . FN (σM , σ1)). (3.5)
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Hier zijn de FN (σi, σi+1) nog arbitraire matrices van dimensie 2N , en voor alle i ∈ {1, . . . ,M} :
σi ∈ {0, 1}. Vanaf nu noemen we een variabele σi een spin. In de volgende stap definiëren
we een 22N+1 bij 22N+1 matrix R, gëındexeerd door 2N + 1 spins. R heeft elementen

R(λ,a,µ),(λ′ ,b,µ′ ) := Fλ,λ′ (a, b)Fµ,µ′ (a, b)

waarbij a en b spins zijn en λ, λ
′
, µ, µ

′
verzamelingen van N spins. Aan de hand van de

definities van ψ en R kan afgeleid worden dat

ψtψ = tr(RM ).

Met de restrictie dat F tM (a, b) = FM (b, a) volgt dat R hermiets is, dus als we ξ definiëren als
de dominante eigenwaarde van R dan hebben we we (analoog aan het bewijs van Lemma
2.28) dat

lim
M→∞

(
ψtψ

)1/M = lim
M→∞

(
tr(RM )

)1/M
= ξ.

Er kan eveens een matrix S met dominante eigenwaarde η gedefinieerd worden, waarvoor
op de zelfde manier kan worden aangetoond dat

ψtTMψ = tr(SM )

en
lim
M→∞

(
ψtTMψ

)1/M = η.

De gevonden vergelijkingen substitueren in het maximumprincipe geeft:

λM = max
ψ 6=0

ψtTMψ

ψtψ
≥ max

F 6=0

ψtTMψ

ψtψ
= max

F 6=0

SM

RM

zodat
κ = lim

M→∞
Λ1/M ≥ max

F 6=0

η

ξ
. (3.6)

We zien dus dat η
ξ een ondergrens van k geeft.

De derde stap behelst het (deels) vertalen van de matrices R en S naar de matrices in
de CTM vergelijkingen. Laat X de eigenvector van R die hoort bij ξ. X bevat 22N+1

elementen, die zo gerangschikt kunnen worden dat zij twee 2N × 2N matrices X(0), X(1)
vormen. Elk van deze matrices wordt gëındexeerd door N spins en de elementen zijn
Xλ,µ(a) = Xλ,a,µ, waarbij λ en µ weer sets van N spins aanduiden. Uit de definities van R
en X kan worden afgeleid dat de eigenwaardenvergelijking ξX = RX equivalent is met:

ξX(a) =
∑
b

F (a, b)X(b)F (b, a). (3.7)

Op een zelfde manier kan de eigenvector Y van S, die hoort bij eigenwaarde η, gëıdentificeerd
worden met een verzameling 2N×2N matrices Y (a, b), waarvoor de eigenwaardenvergelijking
ηY = SY equivalent is met:

ηY (a, b) =
∑
c,d

ω

(
a b
c d

)
F (a, c)Y (c, d)F (d, b). (3.8)
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In de vierde stap is het de bedoeling dat uitdrukking (3.6) gemaximaliseerd wordt over alle
F . Specifieker: er wordt een noodzakelijke en voldoende conditie afgeleid waaronder

∂(η/ξ)
∂F

= 0. (3.9)

Met de afgeleide van een scalair getal naar een matrix wordt hier bedoeld: de matrix die
gevormd wordt door het scalaire getal naar ieder van de matrixelementen te differentiëren.
In andere woorden: df(A)

dA (i, j) = df(A)
dA(i,j) . Voorwaarde (3.9) uitwerken geeft de conditie

η

ξ

∑
c,d tr(Y (c, d)Y (d, c))∑

c tr(X2(c))
·X(a)F (a, b)X(b) =

∑
c,d

ω

(
a b
c d

)
Y (a, c)F (c, d)Y (d, b). (3.10)

In de vijfde stap wordt de matrix A(a) gedefinieerd als wortel van X(a) (waarbij ook
opgemerkt wordt dat voor A(a) een CTM gekozen kan worden!):

X(a) = A2(a). (3.11)

Met behulp hiervan wordt vervolgens aangetoond dat de identiteit

Y (a, b) = A(a)F (a, b)A(b) (3.12)

vergelijking (3.10) en dus ook vergelijking (3.9) impliceert.

Samengevat hebben we de vergelijkingen (3.7), (3.8),(3.11) en (3.12) tot onze beschikking.
De eerste twee impliceren dat ξ en η de eigenwaarden zijn van de matrices R respectievelijk
S, zodat de ondergrens in (3.6) geldt. De laatste twee impliceren dat η

ξ afgeleide 0 heeft
ten opzichte van de matrices F en dus, zo zegt Chan, de maximale waarde aanneemt.

Door (3.7), (3.8),(3.11) en (3.12) in elkaar in te vullen volgt dat zij overeenkomen met de
eerste twee CTM vergelijkingen in Lemma 3.5.

Ten slotte is een verklaring van de derde vergelijking in Lemma 3.5 van belang: er moet nog
worden aangetoond dat in oneindig grote roosters (voor N →∞) geldt dat de benadering
in (3.6) exact wordt: κ = η

ξ . Daartoe wordt afgeleid dat de ruimte gegenereerd door
vergelijking (3.5) de optimale ψ van (3.4) bevat.

Dit gebeurt grofweg als volgt. Eerst worden een algemene vector φ = TN−1
M φ0 en 2N−1

bij 2N−1 matrices F ′(a, b) gedefinieerd in termen van een zekere functie f(σi, σi+1). Als
F (a, b) = F ′(a, b) en ψ = φ worden gesubstitueerd blijken φ en F ′(a, b) te voldoen aan
(3.5). Ten slotte wordt f zodanig gekozen dat φ0 in de basis van eigenvectoren van TM
een niet-nul veelvoud van de eigenvector bij Λ bevat, zodat voor N → ∞ : φ = TN−1

M φ0

asymptotisch niet alleen de partitiefunctie voor M×N roosters wordt, maar ook de optimale
ψ. Bijgevolg geldt voor oneindig grote roosters dat de optimale ψ voldoet aan (3.5) voor
F (a, b) = F ′(a, b). Daarom is voor oneindig grote roosters de optimale ψ bevat in de
verzameling vectoren die voldoen aan (3.5).

Opmerking 3.6
Waar ik zelf niet geheel van overtuigd ben bij bovenstaand bewijs is het volgende. Er wordt
afgeleid dat η

ξ de optimale waarde k aanneemt voor oneindig groot roosters, door aan te

tonen dat de afgeleide van η
ξ naar de F matrices gelijk is aan 0. Naar mijn mening wordt

hiermee alleen aangetoond dat η
ξ stationair is: het is nog niet uitgesloten dat η

ξ eigenlijk
een minimum, of een niet-globaal maximum is.
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Opmerking 3.7
In het tweede bewijs van de CTM vergelijkingen blijkt het niet nodig te zijn aan te nemen
dat X, Y ,A en F matrices van de gegeven dimensies zijn. De dimensies in Definitie 3.2
en 3.3 voor A(a) en F (a, b) zijn weliswaar de enige die grafisch zinvol te interpreteren zijn
(zoals in het eerste ’bewijs’ van de CTM vergelijkingen), maar het blijkt dat net zo goed
aangenomen kan worden dat A(a) en F (a, b) van willekeurige grootte zijn (zolang ze maar
’even groot’ zijn: de dimensies moeten consistent zijn met de matrixvermenigvuldigingen
in de CTM vergelijkingen) [12, p. 75]. De term Corner Transfer Matrix wordt daarom ook
wel gebruikt voor alle matrices die voldoen aan de CTM vergelijkingen.

Nu we de CTM vergelijkingen hebben, willen we ze kunnen oplossen om de waarde van κ
te vinden. In deze scriptie bespreken we alleen de Corner Transfer Matrix Renormalisation
Group (CTMRG) methode. Deze is in 1995 ontwikkeld door Nishino en Okunishi [13].
Hieronder beschrijf ik het algoritme zoals Chan het in zijn proefschrift heeft gebruikt voor
het Hard Squares Model. Een belangrijke stap in het algoritme is het uitbreiden van de
matrices A(a) naar uitgebreide CTM matrices Aext(a). In de grafische interpretatie van
Definitie 3.2 komt dit neer op het uitbreiden van Aa := AN (a) naar Aext(a) := AN+1(a):
het gewicht van een extra rij en kolom wordt toegevoegd.

Aext(a) :=


∑

b ω

(
a 0
0 b

)
F (0, b)A(b)F (b, 0)

∑
b ω

(
a 1
0 b

)
F (0, b)A(b)F (b, 1)∑

b ω

(
a 0
1 b

)
F (1, b)A(b)F (b, 0)

∑
b ω

(
a 1
1 b

)
F (1, b)A(b)F (b, 1)


(3.13)

Net zo kunnen de F matrices worden uitgebreid tot matrices Fext(a, b). In de grafische
interpretatie van Definitie 3.3 komt dit neer op het uitbreiden van F (a, b) := FN (a, b) naar
Fext(a, b) := FN+1(a, b): het gewicht van twee extra spins wordt toegevoegd.

Fext(a, b) :=

 ω

(
b 0
a 0

)
F (0, 0) ω

(
b 1
a 0

)
F (0, 1)

ω

(
b 0
a 1

)
F (1, 0) ω

(
b 1
a 1

)
F (1, 1)

 (3.14)

Algoritme 3.8
De CTMRG methode verloopt als volgt.

(1) Start met n× n benaderingen van A(a) en F (a, b), typisch n = 1.

(2) Bereken Aext(a) en Fext(a, b).

(3) Diagonaliseer Aext(a). Dat wil zeggen: vind orthogonale matrices Pext(a) zodanig dat
P text(a)Aext(a)Pext(a) diagonaal is, met de diagonaalelementen geordend van groot naar
klein.

(4) Als we de matrices blijvend willen uitbreiden, zet n = n+ 1.

(5) Laat P (a) de matrix bestaande uit de eerste n kolommen van Pext(a).

(6) Bereken A(a) = P t(a)Aext(a)P (a) en F (a, b) = P t(a)Fext(a, b)P (b)

(7) Ga naar stap 2.
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In stap 2 worden de matrices uitgebreid zodat zij, als het ware, de gewichtsom van grotere
roosters beschrijven. In stap 3 worden de eigenwaarden van Aext bepaald. Als we stap 4
overslaan wordt de nieuwe A(a) in stap 6 gelijk gesteld aan de n× n diagonaalmatrix met
de grootste eigenwaarden van de 2n × 2n matrix Aext op de diagonaal. Terug in stap 2
zijn de matrices A(a) en F (a, b) dan precies even groot als eerst, met als verschil dat alleen
de large scale informatie (uit de grootste eigenwaarden) is behouden. Als we stap 4 niet
overslaan dan wordt A(a) in stap 6 gelijk gesteld aan de n+ 1×n+ 1 diagonaalmatrix met
de grootste eigenwaarden van Aext op de diagonaal. Terug in stap 2 is de dimensie van de
matrix dan definitief toegenomen.

Opmerking 3.9
Een Interaction Round a Face (IRF) model op een vierkant rooster is een interactiemodel
waarvan alle interacties plaatsvinden in één vlak en die interacties worden gedefinieerd
door een uitdrukking van de vorm van Definitie 3.1. De principes van de CTMRG methode
kunnen ook op andere IRF modellen dan het Hard Squares Model worden toegepast. Het
enige verschil zit, impliciet, in stap 2 van het algoritme omdat de uitbreidingsregels (3.13) en

(3.14) anders zijn. Ieder IRF model heeft immers een andere definitie van ω

(
a b
c d

)
. Sub-

tiele voorwaarde voor de geldigheid van het bewijs van de CTM vergelijkingen is wel dat de

interacties reflectiesymmetrisch moeten zijn: ω

(
a b
c d

)
= ω

(
b a
d c

)
= ω

(
c d
a b

)
=

ω

(
d c
b a

)
.

Als met het CRMRG algoritme de benaderingen van de matricesA(0), A(1) en F (0, 0), F (1, 0)
en F (0, 1) eenmaal gevonden zijn, dan kunnen zij gebruikt worden om dingen te bereke-
nen. Niet alleen de waarde van κ, die vrij direct volgt uit de CTM vergelijkingen, maar
ook verwachtingen van spinproducten kunnen worden benaderd (zie [12, p. 67-71] voor
afleidingen).

De dichtheid ρ wordt bijvoorbeeld gegeven door

ρ =

∑
a∈(0,1) a · trA4(a)∑
a∈(0,1) trA

4(a)
=

trA4(1)∑
a∈(0,1) trA

4(a)

hetgeen grafisch goed interpreteerbaar is. Als A(0) en A(1) namelijk de gewichtsom van
N×N roosters beschrijven, dan staat in de teller de gewichtsom van 2N−1×2N−1 roosters
met een 1 in het midden ,terwijl in de noemer de hele gewichtsom van alle 2N − 1× 2N − 1
roosters staat, zodat de formule de kans op een 1 in het midden berekend.

Voor verwachtingen van andere functies van de spins kan het volgende beschouwd worden.

Als σi, σj , σk en σl spins zijn rond een enkel vlak
(
σi σj
σk σl

)
en f(σi, σj , σk, σl) een of

andere functie van die spins, dan is de verwachtingswaarde van f gegeven door :

〈f(σi, σj , σk, σl)〉 =

∑
a,b,c,d∈(0,1) f(a, b, c, d) ·Q(a, b, c, d)

Q(a, b, c, d)

waarbijQ(a, b, c, d) := tr

(
ω

(
a b
c d

)
A(a)F (a, c)A(c)F (c, d)A(d)F (d, b)A(b)F (b, a)

)
gëınterpreteerd
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kan worden als de gewichtsom van 2N × 2N roosters met het vlak
(
σi σj
σk σl

)
in het mid-

den.

Voorbeeld 3.10
Als voorbeeld zijn in Figuur 6 de verwachtingswaarde van de dichtheid ρ en het diagonale
spinproduct ρ2 := 〈σjσk〉 bepaald. Een veelgebruikte naam voor ρ2 is next nearest neighbour

correlatie. Merk op dat ρ2 gelijk is aan de kans dat een willekeurig vlak

(
σi σj
σk σl

)
de

configuratie

(
0 1
1 0

)
heeft.
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4 Combinatorische eigenschappen van TM

In dit hoofdstuk bekijken we allerlei interessante kleine eigenschappen van TM , zoals de
recursieve structuur, de determinant, de inverse en het aantal positieve eigenwaarden.

Lemma 4.1
Definieer voor alle M de matrix CM als de matrix die bestaat uit de eerste Fib(M + 1)
kolommen van TM , dan geldt voor alle z dat TM en CM recursief gegeven zijn door

TM+1 =
(
TM z · CM
CtM 0

)
en CM =

(
TM−1

CtM−1

)
T1 =

(
1 z
1 0

)
en C1 =

(
1
1

)
.

Bewijs. Beschouw eerst het geval z = 1. Definieer Γ1 = {1, . . . ,Fib(M + 2)} en
Γ2 = {Fib(M + 2) + 1, . . . ,Fib(M + 3)} en bekijk de definitie van TM+1 in termen van
de Fib(M + 3) correcte kolomvectoren vM+1,i uit RM+1 (Definitie 2.3). Aangezien deze
kolomvectoren binair geordend zijn geldt voor alle i ∈ Γ1 dat het M + 1-de element van de
i-de vector vM+1,i gelijk is aan 0, terwijl voor alle i ∈ Γ2 het M + 1-de element van vM+1,i

gelijk is aan 1. Nu:

Voor alle (i, j) ∈ Γ1 × Γ1 geldt dat

TM+1(i, j) = 1⇔ 〈vM+1,i, vM+1,j〉 = 0⇔ 〈vM,i, vM,j〉+ 0 · 0 = 0⇔ TM (i, j) = 1

dus de Fib(M + 2) bij Fib(M + 2) blokmatrix in de linkerbovenhoek van TM+1 is gelijk aan
TM .

Voor alle (i, j) ∈ Γ2 × Γ2 geldt dat

TM+1(i, j) = 0⇔
〈
vM,i−Fib(M+2), vM,j−Fib(M+2)

〉
+ 1 · 1 = 〈vM+1,i, vM+1,j〉 > 0

dus de Fib(M + 1) bij Fib(M + 1) blokmatrix in de rechter onderhoek is een 0-matrix.

Voor alle (i, j) ∈ Γ1 × Γ2 geldt dat

TM+1(i, j) = 1⇔
〈
vM,i, vM,j−Fib(M+2)

〉
+ 0 · 1 = 〈vM+1,i, vM+1,j〉 = 0

dus de Fib(M + 2) bij Fib(M + 1) blokmatrix in de rechter bovenhoek van TM+1 is CM ,
de matrix die bestaat uit de eerste Fib(M + 1) kolommen van TM . Analoog voor de linker
onderhoek.

Hiermee is aangetoond dat TM+1 =
(
TM CM
CtM 0

)
. Door deze relatie toe te passen op TM

volgt direct uit de definitie van CM dat CM =
(
TM−1

CtM−1

)
.

De recursierelatie voor algemene z volgt ten slotte uit Opmerking 2.5, omdat voor alle i ∈ Γ2

geldt dat D2
M+1(i, i) = z ·D2

M+1(i−Fib(M+2), i−Fib(M+2)). In iets beeldender woorden:
de extra factor z ontstaat omdat de Fib(M + 1) correcte vectoren die de Fib(M + 1) ’meest
rechtse’ kolommen van TM+1 indexeren allemaal een extra 1 hebben, op coördinaat M + 1.
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Lemma 4.2
Voor alleM ≥ 1 en z = 1 heeft TM+2 de volgende decompositie in een bovendriehoeksmatrix
L en een diagonale matrix B:

TM = LtMBMLM

waarbij

LM+2 =

 LM+1

(
LM
0

)
0 LM

 , L1 =
(

1 1
0 1

)
, L2 =

 1 1 1
0 1 0
0 0 1


BM+2 =

(
BM+1 0

0 −BM

)
, B1 =

(
1 0
0 −1

)
, B2 =

 1 0 0
0 −1 0
0 0 −1

 .

Bewijs. We bewijzen met inductie. Neem aan dat er een M bestaat zodanig dat voor alle
m ≤M+1 geldt dat Tm = LtmBmLm en Cm−1 = Ltm−1

(
Bm−2Lm−2

0

)
- de geldigheid hiervan

voor kleine m is eenvoudig te checken -,

dan geldt ook:

LtM+1

(
BMLM

0

)
=

(
LtM 0(

LtM−1 0
)

LtM−1

)
·

 (
BM−1 0

0 −BM−2

)
LM

0


=

(
LtMBMLM(

LtM−1BM−1, 0
)
LM

)
=

(
TM
CtM

)
(4.1)

= CM+1

zodat

LtM+2BM+2LM+2 =
(

LtM+1 0(
LtM 0

)
LtM

)
·
(
BM+1 0

0 −BM

)
·

 LM+1

(
LM
0

)
0 LM


=

(
LtM+1 0(
LtM 0

)
LtM

)
·

 BM+1LM+1

(
BMLM

0

)
0 −BMLM


=

 LtM+1BM+1LM+1 LtM+1

(
BMLM

0

)
(
LtMBM 0

)
LM+1 LtMBMLM + LtM (−BMLM )


=

(
TM+1 CM+1

CtM+1 0

)
(4.2)

= TM+2.

De inductieveronderstelling is gebruikt bij stap (4.1) en (4.2) .
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Gevolg 4.3
Algemener gelden (vanwege Opmerking 2.7 en Definitie 2.10) voor alle gehele M ≥ 1 en
z ∈ R>0 de volgende decomposities:

TM (z) = LtMBM (LMD2
M (z))

SM (z) = (LMDM (z))tBM (LMDM (z))

waarbij LMD
2
M (z) en LMDM (z) bovendriehoeksmatrices zijn.

Gevolg 4.4

det(TM ) = z(
∑M

i=1 ||vi||2) ·
{
−1 als M= 1 mod 6 of M= 3 mod 6
1 anders.

Bewijs. Vanwege de expansie in Gevolg 4.3 geldt dat

det(TM ) = det(LtMBMLMD
2
M (z)) (4.3)

= det(LM )2 · det(D2
M ) · det(BM ) (4.4)

= 12 ·
M∏
i=1

z||vi||2 · det(BM ) (4.5)

= z(
∑M

i=1 ||vi||2) · det(BM ). (4.6)

Vanwege de recursieve definitie in Lemma 4.2 wordt de determinant van BM bepaald door
de relatie det(BM+2) = det(BM+1) · det(−BM ) = det(BM+1) · det(BM ) · (−1)Fib(M+2) met
begincondities det(B1) = −1 en det(B2) = 1. Aangezien voor de fibonaccigetallen geldt dat
Fib(N) even is dan en slechts dan als N = 0 mod 3, krijgen we

det(BM+2) = det(BM+1) · det(BM ) ·
{

1 als M = 2 mod 3
−1 anders.

Toepassen van deze relatie op de begincondities B1 = −1 en B2 = 1 geeft B3 = −1, B4 =
1, B5 = 1, B6 = 1, B7 = −1, B8 = 1, . . .. Vanaf de berekening van B9 zijn de recursieve
relatie en de ’begincondities’ B7 en B8 precies hetzelfde, zodat het patroon −1, 1,−1, 1, 1, 1
zich eindeloos zal herhalen:

det(BM ) =
{
−1 als M= 1 mod 6 of M= 3 mod 6
1 anders.

We zien dus dat het teken van de determinant periode 6 heeft en dat de absolute waarde van
det(TM ) gelijk is aan z tot de macht ’het totaal aantal 1-en van alle correcte kolomvectoren
die in RM zitten’. In het bijzonder geldt voor z = 1 dat de determinant slechts waarden 1
of −1 kan aannemen.

Stelling 4.5
Sylvesters traagheidswet [14, p. 96]
Laat A een symmetrische matrix en B een inverteerbare matrix, dan heeft BABt de zelfde
aantallen positieve, negatieve en nulwaardige eigenwaarden als A.
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Gevolg 4.6
Laat PM en NM de aantallen positieve en negatieve eigenwaarden van TM (z), dan geldt
voor alle z ∈ R>0 dat:

PM −NM = − 2√
3

sin
(M − 1)π

3
.

Bewijs. Omdat SM (z) en TM (z) gelijksoortig zijn (Opmerking 2.11) hebben zij de zelfde
eigenwaarden. Pas daarom Sylvesters traagheidswet toe op de decompositie van SM (z)
in Gevolg 4.3, daarbij opmerkende dat LMDM (z) determinant ongelijk 0 heeft en dus
inderdaad een inverteerbare matrix is. Er volgt dat TM (z) de zelfde aantallen positieve en
negatieve eigenwaarden heeft als BM .

Vanwege de definiërende recursierelatie van BM in Lemma 4.2, volgt dat PM+2 −NM+2 =
(PM+1+NM )−(NM+1+PM ) = (PM+1−NM+1)−(PM−NM ) met begincondities P1−N1 = 0
en P2 −N2 = −1.

Deze relatie toepassen geeft de rij 0,−1,−1, 0, 1, 1, 0,−1, · · · die repetent is omdat P7−N7 =
P1 −N1 en P8 −N8 = P2 −N2. Er volgt dat

PM −NM =


0 als M = 1 mod 6 of M = 4 mod 6
−1 als M = 2 mod 6 of M = 3 mod 6
1 anders.

= − 2√
3

sin
(M − 1)π

3

Merk op dat de hoeveelheid positieve en negatieve eigenwaarden van TM (z) onafhankelijk
is van z voor z ∈ R>0! Bovendien is limM→∞

PM
M = 1

2 .

Stelling 4.7
Voor z = 1 is de inverse van TM gegeven door

T−1
M+3 =


(
−T−1

M 0
0 0

) (
T−1

M
0

)
T−1
M+1

( T−1
M 0 ) −T−1

M 0

T−1
M+1 0 −T−1

M+1



T−1
0 := (1) , T−1

1 =
(

0 1
1 −1

)
, T−1

2 =

 −1 1 1
1 −1 0
1 0 −1

 .

Bewijs. Dit kan bewezen worden met inductie door gewoon blok voor blok te controleren
of T−1

M TM = TMT
−1
M = id, maar het is iets interessanter om tot het bewijs te komen

vanuit de decompositie van Lemma 4.2. Merk eerst op dat voor alle M geldt dat: L−1
M+3 =(

L−1
M+2

(
−L−1

M+1

0

)
0 L−1

M+1

)
, iets wat eenvoudig met inductie bewezen kan worden.
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Er volgt dat:

T−1
M+3

= L−1
M+3B

−1
M+3(L−1

M+3)t

=

(
L−1
M+2

(
−L−1

M+1

0

)
0 L−1

M+1

)
·
(
B−1
M+2 0
0 −B−1

M+1

)
·
(

(L−1
M+2)t 0

(−(L−1
M+1)t 0 ) (L−1

M+1)t

)

=

(
L−1
M+2B

−1
M+2(L−1

M+2)t +
(
−L−1

M+1

0

)
(−B−1

M+1) (−(L−1
M+1)t 0 )

(
−L−1

M+1

0

)
(−B−1

M+1)(L−1
M+1)t

L−1
M+1(−B−1

M+1) (−(L−1
M+1)t 0 ) L−1

M+1(−B−1
M+1)(L−1

M+1)t

)

=

(
L−1
M+2B

−1
M+2(L−1

M+2)t −
(
L−1

M+1B
−1
M+1(L−1

M+1)t 0

0 0

) (
L−1

M+1B
−1
M+1(L−1

M+1)t

0

)
( L−1

M+1B
−1
M+1(L−1

M+1)t 0 ) −L−1
M+1B

−1
M+1(L−1

M+1)t

)

=

(
T−1
M+2 −

(
T−1

M+1 0

0 0

) (
T−1

M+1

0

)
( T−1

M+1 0 ) −T−1
M+1

)
.

De tot nu toe verkregen relatie voor T−1
M+2 opnieuw invullen in de linker bovenhoek geeft:

(
T−1
M+1 −

(
T−1

M 0
0 0

) (
T−1

M
0

)
( T−1

M 0 ) −T−1
M

)
−
(
T−1
M+1 0
0 0

) (
T−1
M+1

0

)
(
T−1
M+1 0

)
−T−1

M+1

 .

De termen
(
T−1
M+1 0
0 0

)
vallen weg, zodat de gewenste uitdrukking voor T−1

M+3 ontstaat.

Gevolg 4.8
Algemener geldt, met Opmerking 2.7 en Stelling 4, dat de inverse van TM (z) voor alle
z ∈ R>0 precies bepaald is door

T−1
M (z) = D−2

M (z) · T−1
M (1).

Opmerking 4.9
De technieken om de grootste eigenwaarde van TM te bepalen kunnen niet (in ieder geval
niet direct) worden toegepast op zijn inverse, onder meer doordat T−1

M geen niet-negatieve
matrix is.

Opmerking 4.10
Om de grootste eigenwaarde van TM beter af te schatten zou men kunnen kijken naar
de positieve eigenwaarde λM van T−1

M met de kleinste absolute waarde, want ΛM = 1
λM

.
Verscheidene pogingen hiertoe hebben echter niets interessants opgeleverd.

Opmerking 4.11
Bekijk het geval waarin z een geheel getal ongelijk 0 is. Doordat in dat geval zowel TM (z)
als T−1

M (z) alleen geheeltallige elementen bevat, geldt voor iedere N ∈ Z dat tr(TNM (z)) een
geheel getal is.

Opmerking 4.12
Door te kijken naar een geschikte deelmatrix van TM (z) kan met behulp van Lemma 4.1
ook eenvoudig een recursierelatie voor T̃M (z) bepaald worden. Met behulp hiervan kunnen
heel grote matrices TM (z) en T̃M (z) snel worden gegenereerd, ten behoeve van het bepalen
van scherpe boven- en ondergrenzen voor κ(z).
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Stelling 4.13
Laat A1, . . . , Ap, B1, . . . Bp ∈ N≥2. De volgende zaken zijn equivalent:

(i)
∏p
i=1 Λ̃Ai >

∏p
i=1 Λ̃Bi

(ii) Er bestaat een M ∈ N≥1 zodanig dat voor alle m ≥M geldt dat:∏p
i=1

∑
j λ̃

Ai
j >

∏p
i=1

∑
j λ̃

Bi
j ,

waarbij de sommen lopen over alle eigenwaarden van T̃m.

(iii) Er bestaat een M ∈ N≥1 zodanig dat voor alle m ≥M geldt dat:∏p
i=1

∑
j λ

Ai
j >

∏p
i=1

∑
j λ

Bi
j ,

waarbij de sommen lopen over alle eigenwaarden van Tm.

Bewijs. ”(i) ⇔ (ii)”:
In het onderstaande wordt met het subscript λ̃ ew T̃m bedoeld dat de sommatie over alle
eigenwaarden van T̃m loopt. Merk allereerst op dat (i) equivalent is met

lim
M→∞

 p∏
i=1

∑
(λ̃ ew T̃Ai)

λ̃M


1/M

=
p∏
i=1

Λ̃Ai >

p∏
i=1

Λ̃Bi = lim
M→∞

 p∏
i=1

∑
(λ̃ ew T̃Bi)

λ̃M


1/M

.

Dit geldt dan en slechts dan als er een M ∈ N bestaat zodanig dat voor alle m ≥M :
p∏
i=1

∑
(λ̃ ew T̃Ai)

λ̃m >

p∏
i=1

∑
(λ̃ ew T̃Bi)

λ̃m. (4.7)

Voor alle m,A ∈ N hebben we vanwege Lemma 2.28 dat:∑
(λ̃ ew T̃A)

λ̃m = tr(T̃mA ) = tr(T̃Am) =
∑

(λ̃ ew T̃m)
λ̃A. (4.8)

Invullen van (4.8) in (4.7) geeft (ii):

”(i) ⇔ (iii)”

lim
M→∞

(
p∏
i=1

〈
e, T̃M+1

Ai
e
〉)1/M

=
p∏
i=1

Λ̃Ai >

p∏
i=1

Λ̃Bi = lim
M→∞

(
p∏
i=1

〈
e, T̃M+1

Bi
e
〉)1/M

Dit geldt dan en slechts dan als er een M ∈ N bestaat zodanig dat voor alle m ≥M :
p∏
i=1

〈
e, T̃m+1

Ai
e
〉
>

p∏
i=1

〈
e, T̃m+1

Bi
e
〉
. (4.9)

Voor alle m,A ∈ N≥2 hebben we vanwege Lemma 2.26, 2.28 en het bewijs van Lemma 2.4
dat: 〈

e, T̃m+1
A e

〉
= Z̃m,a(z) = tr(TAm) =

∑
(λ ew Tm)

λA. (4.10)

Invullen van (4.10) in (4.9) geeft (iii):
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5 Hard Squares Model als ééndimensionaal
probleem

Het bepalen van de partitiefunctie voor 1 bij M roosters bleek makkelijk op te lossen, met
als resultaat de fibonaccigetallen. Het geval met algemene M ×N roosters is, zoals blijkt
uit de vele pagina’s die deze woorden zijn voorgegaan, veel moeilijker op te losssen. Dit
suggereert dat het handig zou kunnen zijn om het tweedimensionale model te vertalen naar
een model op ééndimensionale roosters. Het volgende lemma doet dit voor de Hard Square
Entropy constante. Ten behoeve van de overzichtelijkheid en omdat de hier beschreven
gedachten jong zijn, beperkt dit hoofdstuk zich tot schetsmatige bewijzen en alleen het
geval z = 1.

Lemma 5.1
Laat YN,R het aantal correcte binaire vectoren v ∈ RR waarvoor, naast v(i) · v(i + 1) = 0
voor alle i = 1 . . . R− 1, ook v(i) · v(i+N) = 0 voor i = 1 . . . R−N geëist wordt. Dan:

κ(1) = lim
M,N→∞

[YN,MN (1)]
1

MN .

Bewijs. Laat W1 de verzameling van correcte binaire vectoren uit RMN die aan de eisen van
dit lemma voldoen, laat W2 de verzameling van correcte M ×N matrices (zoals in Definitie
1.1) en laat W3 de deelverzameling van W2 bestaande uit matrices A waarvan bovendien
geëist wordt dat voor alle i = 1, . . . ,M − 1: A(i,N) ·A(i+ 1, 1) = 0. Op matrices A uit W3

is met andere woorden een extra randvoorwaarde opgelegd die eist dat een 1 in de meest
linker kolom niet kan coëxisteren met een 1 in de meest rechter kolom, een rij daarboven.
Aangezien dit alleen beperkingen oplegt aan de linker en rechter M -kolomvectoren van A
kan de extra randvoorwaarde het aantal toegestane matrices ten hoogste met een factor
22M verminderen. De MN -de machtswortel van deze factor gaat naar 1 in de limiet van
M,N →∞, zodat de extra randvoorwaarde verwaarloosbaar wordt. Dus

κ(1) = lim
M,N→∞

ZM,N (1)
1

MN = lim
M,N→∞

|W2|
1

MN = lim
M,N→∞

|W3|
1

MN . (5.1)

De belangrijkste stap in het bewijs is nu de observatie dat er een bijectie is tussen W1 en
W3: dit is in te zien door alle rijen van een matrix uit W3 naast elkaar te plaatsen zodat
een vector uit W1 ontstaat. We hebben daarom dat YN,MN (1) = |W1| = |W3| en met
vergelijking (5.1) volgt het resultaat.

Een mogelijke manier om het probleem van Lemma 5.1 aan te vallen, is door het in de vorm
van een polynoom te schrijven. De meest natuurlijke manier lijkt de volgende:

Lemma 5.2

κ(1) = lim
M,N→∞

[
1∑

x1=0

. . .
1∑

xMN =0

MN−N∏
i=1

(1− xixi+1) (1− xixi+M )

] 1
MN

.

Bewijs. Laat x = (x1, . . . , xMN ) een binaire vector. We hebben dat x voor alle i =
1, . . . ,MN − 1 voldoet aan xi · xi+1 = 0 en voor alle i = 1 . . .MN −N aan xi · xi+N = 0,
dan en slechts dan als

∏MN−1
i=1 (1− xixi+1) ·

∏MN−N
i=1 (1− xixi+N ) = 1. Dit product is
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bovendien gelijk aan 0 als x ńıet aan de genoemde voorwaarden voldoet. Als we sommeren
over alle 2MN mogelijke vectoren krijgen we

YN,MN (1) =
1∑

x1=0

. . .
1∑

xMN =0

MN−1∏
i=1

1− xixi+1 ·
MN−N∏
i=1

1− xixi+N .

Het resultaat volgt met Lemma 5.1 en na het verwaarlozen van effecten van de rand.

Gevolg 5.3

κ(1) = lim
M,N→∞

2MN∑
n=1

MN−N∏
i=1

(1− xi(n)xi+1(n)) (1− xi(n)xi+N (n))

 1
MN

waarbij

xi(n) = sin2

(⌊
n− 1
2i−1

⌋
π

2

)
.

Bewijs. De MN sommen van Lemma 5.2 komen neer op een sommatie over alle 2MN binaire
vectoren (x1, . . . , xMN ). Een andere manier om over deze vectoren te sommeren is door
de binaire vectoren in lexicografische volgorde te ordenen en vervolgens voor alle n iedere
coördinaat van de n-de vector te geven als functie van n. De i-de coördinaat xi(n) is precies
gegeven door sin2

(⌊
n−1
2i−1

⌋
π
2

)
.

Een totaal andere methode om het probleem van Lemma 5.1 aan te vallen, is door er een
nieuw soort transfermatrix op los te laten.

Definitie 5.4
Een (1,N)-correcte vector v is een binaire vector die voor alle i voldoet aan v(i) ·v(i+1) = 0
en v(i) · v(i+N) = 0.

Definitie 5.5
De N -de Enkelelementsovergangsmatrix EN is een matrix die gëındexeerd wordt door alle
(1, N)-correcte vectoren uit RN+1, gegeven door

EN (i, j) =
{

1 als vi(k) = vj(k − 1) voor alle k = 2, 3, . . . , N
0 anders.

Een vermenigvuldiging met de matrix EN komt neer op het toevoegen van een extra element
aan een vector met behoud van (1, N)-correctheid van die vector, vergelijkbaar met de
manier waarop een RTM het gewicht van een extra kolom aan een correcte matrix toevoegt.
Bijgevolg kan YN,R(1) voor alle N en R geteld worden met behulp van ERN , vergelijkbaar
met de manier waarop ZM,N in Lemma 2.4 wordt geteld met behulp van een macht van
TM .

Voor de eerste paar matrices E1, E2, . . . E6 is numeriek geverifieerd dat EN een reëel posi-
tieve eigenwaarde Λ̈N heeft die in absolute waarde groter is dan alle overige eigenwaarden.
Indien dit vermoeden voor alle N klopt dan volgt met Lemma 5.1 dat de Hard Square
Entropy Constante is gegeven door limN→∞Λ̈N .

36



Met een aantal tussenstappen, die hier te veel ruimte zouden vergen, kan een zelfde ’aflei-
ding’ gegeven worden voor een vergelijkbare Enkelelementsovergangsmatrix XN , waarvan
de recursieve structuur gegeven is door:

A3 =



1 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0



B3 =



0 0 0
1 1 0
0 1 0
0 0 0
0 0 1
0 0 1


en voor alle N ≥ 3:

AN+1 =
(
AN 0
0 AN

)

BN+1 =
(
BN 0
0 BN

)

XN =
(
AN 0 BN 0
0 AN 0 BN

)
.

Deze matrix X(N) is niet alleen computationeel interessant omdat hij naar verhouding heel
veel nullen bevat, ook lijkt hij erg op een circulante matrix en preliminaire beschouwingen
lijken erop te wijzen dat hij inderdaad een deel van de structuur van het spectrum van
circulante matrices geërfd heeft. Het zou mooi zijn als we de spectraalradius van XN in de
limiet voor N →∞ exact kunnen vinden, want dat resultaat zal hoogstvermoedelijk gelijk
zijn aan de Hard Square Entropy constant.
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6 Monte Carlo

Het Hard Squares Model kan, zoals ontzettend veel statistische modellen, ook met een
Monte Carlo simulatie benaderd worden. Een Monte Carlo simulatie komt grofweg neer op
het heel vaak herhalen van een numeriek experiment, waarna de waarde die men wil weten
gemiddeld wordt over alle experimenten. Een veel gebruikte techniek in de statistische
mechanica is het zogenaamde Metropolisalgoritme [15], dat onder andere gebaseerd is op
Markovketens. Voor het Hard Squares Model gaat het algoritme als volgt:

(i) Begin met een N bij M binair rooster σ.

(ii) Kies uniform random een spin σi op σ.

(iii) Bereken het energieverschil ∂E dat ontstaat als σi omklapt, i.e.: als σi verandert in
1− σi.

(iv) Als ∂E < 0 dan is de nieuwe situatie waarin σi omgeklapt is energetisch gunstiger.
Klap daarom σi om en ga terug naar stap (ii). Als echter ∂E ≥ 0: ga naar stap (v).

(v) De nieuwe situatie is energetisch ongunstiger, maar toch wordt deze met een zekere
kans toegelaten. Genereer een uniform random variabele X ∈ [0, 1]. Nu wordt σi
omgeklapt dan en slechts dan als X < e−β·∂E . Hierbij is β de inverse temperatuur.
Ga terug naar stap (ii).

Als dit algoritme zodanig vaak is uitgevoerd dat er een configuratie is bereikt die typisch
is voor de parameters van het model, dan volgt een grote hoeveelheid iteraties van het
algoritme waarbij in iedere iteratie ook een of andere wetenswaardige variabele, bijvoorbeeld
de dichtheid, wordt berekend. Na afloop wordt over al deze dichtheden gemiddeld. Om te
bepalen wanneer een typische configuratie bereikt is kan bijvoorbeeld kwalitatief gekeken
worden naar het verloop van de fluctuaties in de dichtheid; als de fluctuaties niet meer
afnemen zit je meestal goed.

Om het algoritme uit te voeren moeten we het energieverschil ∂E kunnen uitrekenen en we
moeten weten hoe we de voorwaarde in stap (v) in termen van het model kunnen schrijven.
Voor dit alles hebben we de Hamiltoniaan van het Hard Squares Model nodig. Deze is, als
functie van alle MN spins van het rooster, gegeven door:

H(σ1, . . . , σMN ) = −µ
MN∑
i=1

σi + J(σ).

Hierbij is µ de chemische potentiaal. De tweede term J(σ) is gedefinieerd als 0 indien het
rooster σ correct is en ∞ indien het rooster niet correct is, zodat een incorrect rooster
energetisch oneindig ongunstig is. Ter verificatie dat deze Hamiltoniaan consistent is met
de gebruikelijke definitie van een canonieke partitiefunctie in termen van een Hamiltioniaan:
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∑
σ1,...,σMN

e−βH(σ1,...,σMN ) =
∑

σ1,...,σMN

eµβ(
∑MN

i=1 σi−J(σ))

=
∑

σ1,...,σMN

z(
∑MN

i=1 σi−J(σ))

=
∑
m=0

g(M,N,m)zm

= ZM,N (z).

In het bovenstaande is gebruikt dat de activiteit is gegeven door z = eµβ.

Nu is alles in het algoritme te beschrijven in termen van het Hard Squares Model:

∂E(σi) =


∞ als het nieuwe rooster niet correct is
−µ als het nieuwe rooster correct is en σi = 0
µ als het nieuwe rooster correct is en σi = 1.

zodat de voorwaarde voor het omklappen van een spin in stap (iv) wordt:
Als het rooster incorrect is of z = 1, klap geen spin om. In de overige gevallen:
Als z > 1: klap de spin om als σi = 0.
Als z < 1: klap de spin om als σi = 1.

en in stap (v) wordt de voorwaarde:
Als het rooster incorrect is, klap geen spin om. In de overige gevallen:
Als z ≥ 1: klap de spin om als X < e−β·∂E = e−µβ = 1

z .
Als z ≤ 1: klap de spin om als X < e−β·∂E = eµβ = z.
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7 Resultaten

M
ΛM+1

ΛM

Λ̃M+1

Λ̃M
Λ1/M
M Λ̃M

1/M

1 1.49206603764753... 1.4920660376475... 1.61803398874989... 1.61803398874989...
2 1.50416736820669... 1.3680544626242... 1.55377397403004... 1.55377397403004...
3 1.50292822609300... 1.5612096431108... 1.53705927541412... 1.48922284859254...
4 1.50306009551534... 1.4811943040920... 1.52845452584494... 1.50690222590181...
5 1.50304676764349... 1.5124949400374... 1.52334154618348... 1.50172519164424...
6 1.50304820872735... 1.4990187533992... 1.51994015251839... 1.50351480947590...
7 1.50304806757356... 1.5048302768823... 1.51751544433439... 1.50287169106996...
8 1.50304808371067... 1.5022566096977... 1.51569943415136... 1.50311637482104...
9 1.50304808228931... 1.5034042574246... 1.51428848619865... 1.50302082106893...
10 1.50304808248385... 1.5028869349325... 1.51316067342597... 1.50305916030338...
11 1.50304808247237... 1.5031214743576... 1.51223854234046... 1.5030435-263596...
12 1.50304808247523... 1.5030145138974... 1.51147052905271... 1.50305000012495...
13 1.50304808247526... 1.5030634992129... 1.51082097631579... 1.50304727038539...
14 1.50304808247532... 1.5030409794476... 1.51026443900783... 1.50304842958155...
15 1.50978227250749... 1.50304793290481...

Tabel 1: Voor z = 1 zijn met behulp van de eerste 15 eigenwaarden berekend: de ondergren-
zen ΛM+1

ΛM
en bovengrenzen ΛM 1/M en Λ̃2p

1/2p
van κ(1). Voor de volledigheid is ook Λ̃M+1

Λ̃M

berekend. Merk op dat ΛM 1/M de partitiefunctie per positie is van de M bij N roosters voor
M vast en N →∞. De berekeningen zijn met Matlab uitgevoerd.

De beste boven- en ondergrenzen uit Tabel 1 geven voor de Hard Square Entropy constante
κ(1) dat:

1.503048082475(26) ≤ κ(1) ≤ 1.503048429581(55).

Een CTMRG benadering met 900 iteraties, waarvan 3 per matrixgrootte, geeft de be-
naderingen:

κ(1) = 1.503048082475332..., ρ(1) = 0.226570815462714... en ρ2(1) = 0.0819820025822159...

hetgeen de maximale precisie van de gebruikte variabelen in Matlab was en volledig overeenkomt
met de waarden gevonden in [4].
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Figuur 3: De ondergrens Λ12
Λ11

en bovengrens Λ1/12
12 als functie van z geven voor alle z ≥ 0

een goede benadering van k(z).

Figuur 4: Het verschil G − Λ12
Λ11

tussen bovengrenzen en een sterke ondergrens van κ(z) is

uitgezet tegen z. Hierbij is G = Λ̃1/12
12 (groen), Λ̃1/8

8 (rood), Λ̃1/6
6 (geel) of Λ1/12

12 (blauw).
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Figuur 5: Het verschil G − Λ12
Λ11

is uitgezet tegen z. Hierbij is G gelijk aan de cyclische

bovengrens Λ̃1/12
12 (groen) of gelijk aan een CTMRG benadering met in totaal 300 iteraties

waarvan 8 (zwart), 10 (blauw), 15 (magenta) of 20 (rood) iteraties per matrixgrootte.

Figuur 6: CTMRG benadering van de dichtheid ρ (blauw) en next nearest neighbour corre-
latie ρ2 (rood) als functie van z. Berekend met 1000 CTMRG iteraties, waarvan 500 per
matrix grootte. In beide gevallen is er een discontinüıteit in de afgeleide bij z ≈ 3.8.
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Figuur 7: Monte Carlo snapshots van een 25 bij 25 rooster na 2 miljoen iteraties. Van links
naar rechts: z = 0.1, z = 2 en z = 6. De kleuren rood en blauw geven aan op welke van de
twee ’schaakbord’ subroosters een 1 zich bevindt.

Figuur 8: Benaderingen van de dichtheid ρ en dρ/dµ/eV −1 als functie van µ/ eV. De
zwarte lijn is een Monte Carlo simulatie van Koper en Lukkien uit [6]. De blauwe en rode
lijn zijn benaderingen op basis van de ondergrens Λ12

Λ11
respectievelijk de zwakke bovengrens

Λ1/12
12 van κ(z), verkregen door de relatie ρ(z) = d/dz(ln(κ(z))) uit [4, p. 3] op deze grenzen

los te laten.
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8 Discussie

We hebben grofweg drie benaderingsmethodes van κ(z) bekeken: ten eerste de exacte boven-
en ondergrenzen met Row Transfer Matrices, ten tweede de benaderingen met de CTMRG
methode en ten derde een Monte Carlo simulatie.

Vergelijking van de benaderingsmethodes
De RTM methode heeft het voordeel dat de boven- en ondergrenzen bewezen zijn. Uit
Figuur 4 blijkt dat de grenzen in het regime 0 ≤ z ≤ 3.79 dichter bij elkaar liggen naarmate
z dichter bij 0 ligt, vlak na de singulariteit z+ = 3.79... [2] zijn de benaderingen het slechtst
en voor nog grotere z kruipt het verschil tussen de boven- en ondergrens terug naar 0; de
grenzen komen steeds dichter bij de functie

√
z. Dat laatste is niet verwonderlijk omdat

het laat zien dat voor grote z geldt: ρ(z) = z d
dz ln(k(z)) ≈ z d

dz ln(
√

(z)) = 1
2 , de grootst

mogelijke dichtheid die overeenkomt met een schaakbordpatroon van 1-en en 0-en.

Een ander voordeel van de RTM grenzen is dat zij een goede indicatie geven van voor
welke parameters de CTMRG methode nog betrouwbaar is: in Figuur (5) is te zien dat
CTMRG voor kleine z goed werkt, maar voor grotere z doorbreekt de curve de exacte
bovengrens. Uit verscheidene simulaties blijkt dat de CTMRG methode, bij een vast totaal
aantal iteraties, de exacte RTM bovengrens pas bij een hogere z doorbreekt als stap (4) van
het CTMRG algoritme weinig wordt uitgevoerd, dus als er veel iteraties per matrixgrootte
zijn. Indien stap(4) wel relatief vaak wordt uitgevoerd ontvangt men in ruil een enorm snelle
convergentie van κ(z) voor kleine z. Aangezien de waarde z = 1 in dit ’kleine z’ gebied
valt was het mogelijk om met Matlab binnen weinige seconden de eerste 15 decimalen van
κ(1),ρ(1) en ρ2(1) te vinden (variabelen met meer decimalen bleken lastig te implementeren
in Matlab), precies overeenkomend met de resultaten van Baxter in [4]. Hiermee stippen
we en passant een ander belangrijk voordeel van CTMRG aan: het is relatief eenvoudig om
andere observabelen zoals ρ en ρ2 te berekenen, zoals aan het eind van het hoofdstuk over
CTM’s is toegelicht.

In Figuur 6 zijn ρ en ρ2 als functie van z weergegeven. Beide lijken een discontinüıteit
in de afgeleide te hebben bij z = 3.8..., een punt dat goed overeenkomt met de fysische
singulariteit van κ(z). Voor nog grotere z is de CTMRG benadering met deze parameters
niet betrouwbaar, maar in de figuur is wel al zichtbaar dat ρ en ρ2 beide richting de te
verwachten maximale waarde 1/2 kruipen.

Wat opvalt is dat de CTMRG benadering voor kleine z zeer dicht tegen de RTM onder-
grens aanzit. Dit versterkt het beeld dat uit tabel 1 naar voren springt, namelijk dat de
eigenwaardenquotiënten ΛM+1/ΛM een veel betere benadering van κ(z) geven dan Λ1/M

M

en Λ̃1/M
M , in ieder geval voor kleine z. Voor grote z, ongeveer z ≥ 4, lijkt uit Figuur 5 te

blijken dat de bovengrens Λ̃1/M
M juist een betere benadering geeft.

De Monte Carlo simulatie biedt een tweede check op de bovengenoemde methodes. Door
de formule ρ(z) = d/dz(ln(κ(z)) op de RTM onder- en bovengrens toe te passen kan een
benadering van de dichtheid als functie van z gevonden worden. Dat deze benadering dicht
bij de werkelijke dichtheid ligt is allerminst vanzelfsprekend, want we hebben geen boven-
en ondergrenzen voor de afgeleide van κ(z). Toch blijkt uit Figuur 8 dat de (afgeleide van
de) benadering van de dichtheid uitstekend overeen komt met een Monte Carlo-simulatie
van het Hard Squares Model. Aangezien beide methodes zeer weinig met elkaar te maken
is het aannemelijk dat wat we in de figuur zien juist is.

Uitbreidbaarheid naar andere modellen

44



Zoals in subsectie 2.1 is beschreven, is het goed mogelijk om de RTM benaderingen toe te
passen op een algemener model waarin ook horizontale, verticale en diagonale interacties
worden meegenomen. Nadeel is dat er geen onderscheid gemaakt kan worden tussen hori-
zontale en verticale interactie, noch tussen de twee diagonale interacties, en dat de interactie
niet verder reikt dan next nearest neighbours.

In Opmerking 3.9 is beschreven hoe de CTMRG methode op andere modellen toegepast
kan worden. Voordeel is dat de aard van de interacties van alles kan zijn; ieder reflectie-
invariant IRF model werkt in principe. Nadelen zijn dat de interactie niet verder kan reiken
dan next nearest neighbours en dat vanwege gebrek aan bewijzen a priori onduidelijk is of
er parameters bestaan waarvoor de CTMRG benadering voldoende accuraat of precies zal
zijn.

Het idee beschreven in Hoofdstuk 5, het vertalen naar een ééndimensionaal model, is zeer
geschikt voor generalisering naar modellen waarin er sprake is van een willekeurig aantal
interacties, interacties die ook verder kunnen reiken dan de next nearest neighbours. Vooral-
snog is echter nog onzeker of dit jonge idee een efficiënte benaderingsmethode kan opleveren.
Het biedt in ieder geval wel een interessant persectief om allerlei modellen equivalent aan
elkaar te praten.

Monte Carlo simulaties worden heel veel gebruikt in de statistische mechanica. Een grote
kracht is dat veel ingewikkelder statistische modellen ermee aangevallen kunnen worden,
modellen die allerlei extra effecten en zelfs tijdsafhankelijkheid meenemen waardoor zij
natuurkundig interessant, maar wiskundig onelegant en ‘dus’ moeilijk tot onmogelijk oplos-
baar worden. Een Monte Carlo simulatie is de meest wijd toepasbare methode die in deze
scriptie genoemd wordt, maar heeft misschien meer weg van een experiment dan van een
wiskundige benadering. Wie niet goed oplet ziet numerieke artefacten voor natuurverschi-
jnselen aan. De simulaties kunnen goed dienen als bron van vermoedens en voor het kweken
van begrip. Uit de simulaties van Koper en Lukkien komt bijvoorbeeld naar voren dat de
vorm van de grafiek van de compressibiliteit vooral afhangt van de aard en hoeveelheid van
de interacties en niet van de geometrische structuur van die interacties, hetgeen uitnodigt
tot het zoeken naar wiskundige overeenkomsten tussen die modellen.

Experimentele component
In Figuur 8 zijn de dichtheid en de compressibiliteit (de afgeleide van de dichtheid) als
functie van µ weergegeven. De Monte Carlo simulatie komt goed overeen met de RTM
benaderingen. We zien dat er een scherpe piek in de compressibiliteit zit bij ρ ≈ 0.37. Wat
verder opvalt is dat er een soort ’voorgolf’ is: bij toenemende z neemt de compressibiliteit
eerst snel toe, maar vlak voor de piek zwakt die groei tijdelijk af. Bij experimenten in
het verleden is dit fenomeen wel eens toegeschreven aan extra natuurkundige verschijnselen
waar het model geen rekening mee zou houden. In het experiment over adsorptie van
bromide op een Ag(001) oppervlak dat in de inleiding beschreven is wordt de voorgolf
toegeschreven aan ’the reorientation of surface water’. Figuur 4 laat echter zien dat de
voorgolf puur een gevolg is van de definiërende interacties van het Hard Squares Model.

Hoe zouden we deze voorgolf kunnen interpreteren? Dat kan als volgt. Laten we in
gedachten beginnen in z = 0 en daarna z steeds een beetje ophogen. Voor kleine z bevat
een gemiddeld rooster weinig 1-en (zie Figuur 7 voor z = 0.1), dus er zijn veel mogelijkhe-
den om een extra 1 toe te voegen; de dichtheid kan vrijwel onbelemmerd toenemen. Vanaf
een zekere z zal een gemiddeld rooster echter dichtgegroeid zijn met ‘eilandjes’ van correcte
gebieden die op een van de twee subroosters (zwart of wit) van een schaakbord zitten. Daar
waar deze eilandjes elkaar ontmoeten ontstaat een domeinmuur, een grensgebied dat niet
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optimaal gevuld is, maar ook geen extra 1-en meer toelaat (zie Figuur 7 voor z = 2). Om
een extra 1 toe te kunnen voegen moet eerst een deel van een van beide eilanden weer
verdwijnen door toevallige fluctuaties. Dit bemoeilijkt de toename van de dichtheid, zodat
de compressibiliteit afzwakt. Dit verklaart de voorgolf van Figuur 8.

Als z nog verder toeneemt dan wordt de statistische voorkeur voor gebieden met heel veel
1-en zo groot, dat roosters met 1-arme domeinmuren zeer ongunstig worden, met als gevolg
dat de kans dat domeinmuren worden doorbroken toeneemt. Als een domeinmuur eenmaal
doorbroken is, eilanden samengevoegd, dan passen er ineens veel meer 1-en op het rooster.
Er hoeft niet noodzakelijk sprake te zijn van het doorbreken van domeinmuren. Wat vooral
belangrijk is dat het aantal posities dat deel uitmaakt van een domeinmuur afneemt, dat
het aantal eilanden afneemt, dat ieder overlevend eiland groter wordt -‘meer oppervlakte
per rand bevat’- en daardoor naar verhouding meer 1-en kan bevatten. Deze overwegingen
verklaren de aanwezigheid van de piek in de compressibiliteit bij ρ ≈ 0.37.

Na de piek zijn er typisch geen concurrerende eilanden meer. Er zijn typisch slechts een of
twee continenten (zie Figuur 7 voor z = 6), waarin nog enkele kleine gaten zitten die af en
toe verschijnen, zich verplaatsen en weer verdwijnen. De compressibiliteit neemt af, want
de maximum dichtheid ρ = 0.5 is al bijna bereikt.

Aangezien in deze interpretatie de piek veroorzaakt wordt door het verdwijnen van domein-
muren en het groter worden van eilanden, zodat 1-en over grotere afstanden op het zelfde
subrooster van een schaakbord zitten, valt het te verwachten dat rondom de piek de corre-
latielengte ook plots snel toeneemt. Ocko c.s. lieten iets dergelijks al in een experimentele
context zien met behulp van Figuur 1.e. Het is interessant om dit in de toekomst met
Monte Carlo ook direct uit het Hard Squares Model te verifiëren.

Conclusies

(i) De drie gebruikte benaderingsmethodes van κ(z) (exacte RTM boven- en ondergren-
zen, de CTMRG methode en Monte Carlo simulaties) komen goed overeen. De
CTMRG methode is in de huidige vorm zeer precies voor kleine z, maar wordt snel
onbetrouwbaar voor toenemende z, terwijl de exacte boven- en ondergrenzen juist
steeds scherper worden in dit regime.

(ii) De exacte grenzen van Calkin en Wilf voor de Hard Square Entropy constante zijn,
met behulp van hun eigen technieken, met drie decimalen verbeterd tot:

1.503048082475(26) ≤ κ(1) ≤ 1.503048429581(55).

(iii) Alle drie de methodes kunnen op analoge wijze op algemenere interactiemodellen wor-
den toegepast. Een vierde methode, waarin het model is vertaald naar een model met
interacties op een ééndimensionaal rooster, biedt wellicht perspectief voor toekomstige
toepassingen.

(iv) De karakteristieke ’butterfly’ patronen in het voltammogram van het adsorptie-experiment
in [8] zijn een direct gevolg van de interacties in het Hard Squares Model en behoeven
dus geen verklaring uit extra fysische effecten.
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